Work from "Demazuse Crystals and the Schur Positivity of Catalan Functions" by Blasiak, Morse, Dun

- Aim: Schur and key -positivity of nonsymnetric Catalan Functions

1) Nonsymmetric Catalan Function:

Def: Symmetric group S_{l}

$$
\text { gen: } S_{1}, \ldots, S_{l-1}
$$

relations:
(1) $S_{i}^{2}=1$
(2) $\delta_{i} s_{j}=s_{j} s_{i} \quad|i-j|>\mid$
(3) $S_{i} S_{i+1} S_{i}=S_{i+1} S_{i} S_{i+1}$

Def. O-Hecke Monoid of $\mathrm{Se} \mathrm{H}_{l}$

$$
\text { gen: } \sigma_{1}, \ldots, \sigma_{l-1}
$$

relations: $\quad \sigma_{i}^{2}=\sigma_{i}$
-(2)-(3) replace si ω / σ_{i}

$$
\cdot \mathbb{Z}[q][\underline{x}]=\mathbb{Z}[q]\left[x_{1}, \ldots, x_{l}\right]
$$

Def: Demazure operator π_{i}

$$
f \in \mathbb{Z}[q][\underline{x}] \quad \bar{n}_{i}(f)=\frac{x_{i} f-x_{i+1} S_{i}(f)}{x_{i}-x_{i+1}}
$$

Extend this to $\pi_{\omega}=\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{m}} \quad \omega=\sigma_{i_{1}} \sigma_{i_{2}} \ldots \sigma_{i_{m}} \in H_{l}$ τ reduced expression

Def: Key polynomials

$$
\alpha \in \mathbb{Z}^{\ell} \quad K_{\alpha}=\pi_{\alpha(\alpha)} x^{\operatorname{sor} t(\alpha)} \quad n(x) \in H_{n} \text { of shortest }
$$

$$
\alpha \in \mathbb{Z}^{e} \quad K_{\alpha}=\pi_{p(\alpha)} x^{\operatorname{sort}(\alpha)}
$$

$p(\alpha) \in$ He of shortest length $\alpha \rightarrow \operatorname{sort}(\alpha)$
Prof: (Reiner-Shimozono, 1995)
$\left\{K_{\alpha} \mid \alpha \in \mathbb{Z}^{\ell}\right\}$ form a basis for $\mathbb{Z}_{q}[\underline{x}]$ and $\mathbb{Z}_{q}[\underline{x} \pm 1]$
Def: Polynomial truncation operator poly

$$
\operatorname{poly}\left(K_{\alpha}\right)= \begin{cases}K_{\alpha} & \text { if } \alpha \in \mathbb{Z}_{\geq 0}^{l} \\ 0 & \text { else }\end{cases}
$$

Def: Root ideal ψ upper order ideal of poset $\left(\Delta_{l_{1}}^{+} \leq\right)$

$$
\begin{aligned}
& \Delta_{l}^{+}=\{(i, j) \mid 1 \leq i<j \leq l\} \\
& (a, b) \leq(c, d) \Leftrightarrow \quad a \geq c \quad \text { and } \quad b \leq d
\end{aligned}
$$

Ex: $\ell=4$

$$
\psi=\{(1,3),(1,4),(2,4)\}
$$

Def: Nonsymmetric Catalan Function $H(\psi, \gamma, \omega)(\underline{x} ; q)$
$\psi \in \Delta_{l}^{+}, \omega \in H^{l}, \quad \gamma \in \mathbb{Z}^{l}$

$$
H(\psi, \gamma, \omega)=\pi_{\omega}\left(\text { poly } \left(\left(\prod _ { (i , j) \in \psi } \left(1-\frac{\left.\left.\left.\left.\left.q \frac{x_{i}}{x_{j}}\right)^{-1}\right) \cdot x^{\gamma}\right)\right)\right), ~(1)}{}\right.\right.\right.\right.
$$

Ex: $\ell=4 \quad U$ as above

$$
\left.H\left(v_{1},(2,3,0,0), \sigma_{1}\right)=\pi_{1} \quad d y\left(\left(1+q \frac{x_{1}}{x_{3}}+q^{2} \frac{x_{1}^{2}}{x_{3}^{2}}+\ldots\right)\left(1+q \frac{x_{1}}{x_{4}}+\ldots\right)\left(1+q \frac{x_{2}}{x_{4}}+\ldots\right) x_{1}^{2} x_{2}^{3}\right)\right)
$$

$$
\begin{aligned}
& H\left(v,(2,3,0,0), \sigma_{1}\right)=\pi_{1}\left(p o l y\left(\left(1+q \frac{x_{1}}{x_{3}}+q^{2} \frac{x_{1}^{2}}{x_{3}^{2}}+\ldots\right)\left(1+q \frac{x_{1}}{x_{4}}+\ldots\right)\left(1+q \frac{x_{2}}{x_{4}}+\ldots\right) x_{1}^{2} x_{2}^{3}\right)\right) \\
& =\pi_{1}\left(\operatorname{poly}\left(x_{1}^{2} x_{2}^{3}+q\left(x_{1}^{3} x_{2}^{3} x_{3}^{-1}+x_{1}^{3} x_{2}^{3} x_{4}^{-1}+x_{1}^{2} x_{2}^{3} x_{4}^{-1}\right)+q^{2}(\ldots)+\ldots\right)\right) \\
& =\pi_{1}\left(\text { poly }\left(k_{2,3}-k_{3,2}+q\left(k_{3,3,-1,0}-k_{3,3,0,-1}+k_{3,3,0,-1}+k_{2,4,0,1}-k_{4,2,0,1}-K_{3,3,0,-1}\right)+\ldots\right)\right) \\
& =\pi_{1}\left(K_{2,3}-K_{3,2}\right)=K_{3,2}-K_{2,3}
\end{aligned}
$$

Remark: if $\omega=\omega_{0}$ (longest element in H_{l}) then $H(\nu, \gamma, \omega)$ reduces to symmetric Catalan function

Def: $n(\psi)$

$$
\begin{array}{ll}
\psi \in \Delta_{l}^{+} & n(\psi)=\left(n_{1}, \ldots, n_{\ell-1}\right) \in[l]^{l-1} \\
& n_{i}=|\{j \in\{i, \ldots, l\}:(i, j) \notin \psi\}|
\end{array}
$$

Def: Tame labeled root ideal
(ψ, γ, ω) is tame if $\left\{n_{1}+1, \ldots, \ell-1\right\} \subseteq\left\{j \in[l-1] \mid \omega \sigma_{j}=\omega\right\}$
Ex: $\quad l=5 \quad n(\psi)=(2,2,2,2) \quad \omega=\sigma_{3} \sigma_{4} \sigma_{3} \quad \gamma=(2,2,2,1,1)$

$$
\begin{aligned}
& \{2+1,5-1\}=\{3,4\} \\
& \omega \sigma_{3}=\sigma_{3} \sigma_{4} \sigma_{3} \sigma_{3}=\sigma_{3} \sigma_{4} \sigma_{3}=\omega \\
& \omega \sigma_{4}=\sigma_{3} \sigma_{4} \sigma_{3} \sigma_{4}=\sigma_{3} \sigma_{3}^{11} \sigma_{4} \sigma_{3}
\end{aligned}
$$

Def: $\quad \Phi: \mathbb{Z}[q][\underline{x}] \rightarrow \mathbb{Z}[q][x]$

$$
\Phi\left(x_{i}\right)=x_{i+1} \quad i \epsilon[l-1] \quad \Phi\left(x_{\ell}\right)=q_{0} x_{1}
$$

Prop: (ψ, γ, ω) tame labeled root ideal, $\gamma \in \mathbb{L}^{l} \geq 0$

$$
H(\psi, \gamma, \omega)=\pi_{\omega} x_{1}^{\gamma_{1}} \Phi \pi_{s\left(n_{1}\right)} x_{1}^{\gamma_{2}} \Phi \ldots \Phi \pi_{s\left(n_{\ell-1}\right)} x_{1}^{\gamma_{\ell}}
$$

where $s(d)=\sigma_{l-1} \ldots \sigma_{d} \in \mathrm{He}_{l}$
2) Crystals:
g- sym. Kac-Moody Lie Algebra $\quad U_{q}(g)$

- I- nodes for Dynkin diagram
- P^{*} - cowing lattice
$\left\{\alpha_{i}^{\nu}\right\} \subseteq P^{*}$ coroots
- P. weight lattice
$\left\{\alpha_{i}\right\} \subseteq P$ roots

$$
\langle\because \cdot\rangle: P \times P \rightarrow \mathbb{Q}
$$

Def: $U_{q}(g)$ seminormal crystal is a set B w/

- $\omega t: B \rightarrow P$
- $f_{i}, e_{i}: B \cup\{0\} \rightarrow B 山\{0\}$
$f_{i}(0)=e_{i}(0)=0 \quad i \in I$
s.t. 1) $\omega t\left(e_{i} b\right)=\omega t(b)+\alpha_{i}$

2)

$$
\begin{aligned}
& \varepsilon_{i}(b)=\max \left\{k \geq 0 \mid e_{i}^{k}(b) \neq 0\right\}<\infty \\
& \varphi_{i}(b)=\max \left\{k \geq 0 \mid f_{i}^{k}(b) \neq 0\right\}<\infty \\
& \left\langle\alpha_{i}^{v}, \omega t(b)\right\rangle=\Phi_{i}(b)-\varepsilon_{i}(b)
\end{aligned}
$$

Ex: Uf(gl $)$ crystal on SSYT

Def. character $\quad \operatorname{ch}(B)=\sum_{b \in B} x^{u t(b)}$
Prop: Let $B\left(u_{\lambda}\right)$ be a hiv. $U_{q}($ gle crystal w/ h.w. λ

$$
\operatorname{ch}\left(B\left(u_{\lambda}\right)\right)=S_{\lambda}(\underline{x})
$$

Def: Demazure operator \mathcal{F}_{i}
B - $u_{g}(g)$ seminormal crystal $\quad \delta \leq B$

$$
J i S=\left\{f_{1}^{m} b \mid b \in S ; m \geq 0\right\} \backslash\{0\} \leq B
$$

Def: $U_{g}(g)$-Demazure crystal subset of h.w. $U_{q}(y)$ crystal $B(\Lambda)$ of the form

$$
\mathcal{J}_{1} \ldots \mathcal{J}_{i k}\left\{u_{\Lambda}\right\} \text { h.v. dement of } B(\Lambda)
$$

Ex:

$$
\mathcal{F}_{\mathcal{F}} \mathcal{J}_{2}\{\text { 皿\} }
$$

Prop: $\alpha \in \mathbb{L}_{\geq 0}^{l} \quad B\left(u_{\text {sot }}(\alpha)\right)-$ h.w. $U_{q}\left(g l_{l}\right)$ crystal w/ h.w. sort (α)

$$
\operatorname{ch}\left(\mathcal{F}_{p(\alpha)}\left(u_{\operatorname{sor} t(\alpha)}\right)\right)=K_{\alpha}(\underline{x})
$$

Rough Out line: \quad "charr ${ }^{\mu}(\underbrace{\text { AGDistal }}_{\text {LG D not nice }})=\pi_{\omega_{1}} x_{1}^{\mu_{1}} \Phi \pi_{\omega_{2}} x_{1}^{\mu_{2}} \Phi \ldots \Phi \pi_{\omega_{p}} x_{1}^{\mu_{p}}$

- AGD crystal $\xrightarrow{\text { "isomorphism" }}$ DARK crystal
- DARK crystal <- decompose this into a disjoint union of $U_{q}(g l)$ - Demazure crystals

Def: Extended Affine Symmetric Group \widetilde{S}_{l}

$$
g e n: \quad S_{i} \quad i \in \mathbb{Z} / l \mathbb{Z}, \tau
$$

relations:
(i) $S_{i}^{2}=1$
(ii) $S_{i} S_{j}=S_{j} S_{i} \quad$ i\& $\{j-1, j+1\}$
(iii) $S_{i} S_{i+1} S_{i}=S_{i+1} S_{i} S_{i+1}$
(iv) $\tau S_{i}=S_{i+1} \tau$
(v) $\tau^{l}=1$

Def: O-Hecke Monoid \tilde{H}_{e}
gen: $\sigma_{i} i c \mathbb{Z} / l \mathbb{L} \quad \tilde{L}$
rel: $\quad \sigma_{i}^{2}=\sigma$

- (ii)-(v) replace $s_{i} w / \delta_{i}$

Def: $B(\Lambda)$ - h.w. $u_{\ell}\left(\hat{s t}_{\ell}\right)$ crystal h.w. Λ h.w. element u_{Λ}
h.w. element u_{Λ}
$\tilde{J}_{\tau}: B(\Lambda) \rightarrow B(\tau(\Lambda))$

$$
f_{j_{1}}^{d_{1}} \cdots f_{j_{k}}^{d_{k}}\left(u_{\Lambda}\right) \rightarrow f_{\tau\left(j_{1}\right)}^{d_{1}} \cdots f_{\tau\left(j_{k}\right.}^{d_{k}}\left(u_{\tau(\Lambda)}\right)
$$

Def: $U_{q}\left(\hat{s}_{l}\right)$-generalized Demazure (GD) crystal
$\Lambda_{1}, \ldots, \Lambda_{p}$ dominant weights $\underline{\omega}=\left(\omega_{1}, \ldots, \omega_{p}\right) \in\left(\tilde{H}_{l}\right)^{p}$

$$
\mathcal{J}_{\omega_{1}}\left(\mathcal{J}_{\omega_{2}}\left(\ldots \mathcal{J}_{\omega_{p-1}}\left(\mathcal{F}_{\omega_{p}}\left\{u_{\Lambda_{p}}\right\} \otimes u_{\Lambda_{p-1}}\right) \otimes u_{\Lambda_{p-2}}\right) \ldots \otimes u_{\Lambda_{1}}\right)
$$

Def: Affine generalized Demazure (AGD) crystal

$$
\begin{aligned}
& A G D(\mu ; \underline{\omega})=\mathcal{J}_{\omega_{1}}\left(\mathcal{J}_{\tau \omega_{2}}\left(\ldots \exists_{\tau \omega_{p-1}}\left(\mathcal{J}_{\tau \omega_{p}}\left\{u_{\mu^{p} \Lambda_{1}}\right\} \otimes u_{p^{-1} \Lambda_{1}}\right) \ldots \otimes u_{p^{\prime} \Lambda_{1}}\right)\right. \\
& \mu=\left(\mu, \ldots \mu_{p} \geq 0\right) \quad \underline{\omega}=\left(\omega_{1}, \ldots, \omega_{p}\right) \in\left(H_{l}\right)^{p} \\
& \mu^{i}=\mu_{i}-\mu_{i+1}
\end{aligned}
$$

Prop: $\pi_{\omega_{1}} x_{1}^{\mu_{1}} \Phi \pi_{\omega_{2}} x_{1}^{\mu_{2}} \ldots \Phi \pi_{\omega_{p}} x_{1}^{\mu_{p}}=q^{-n_{\ell}(\mu)} \operatorname{charar}_{x} \mu(A G D(\mu ; \omega))$

$$
n_{l}(\mu)=\frac{|\mu|(l-1)}{2 l}-\frac{1}{l} \sum_{i=1}^{p}(i-1) \mu_{i}
$$

