Some Combinatorics
associated with

K-Schur Functions

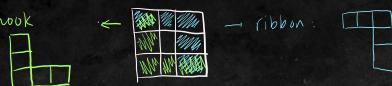
May 3,2021

Def. (1) An n-core is a shape where no n-ribbon can be removed.

Def. (2) or a shape where no cell has hook length equal to n.

Def. (3) or a shape where no cell has hook length divisible by n.

Note. I will use French notation for all our partitions, i.e.,


(2,1) = \frac{1}{12}.

These are all equivalent.

no removable

No hook length n =>

$(2) \Rightarrow (1)$: No hook length $h \Rightarrow no$ removable
n-nbbon. A removable n-nbbon has a northwest 5 and
southeast & corner which are also the northwest and
Southeast corners of some hook. Both the ribbon and the
hook are paths from the NW to the SE corner with steps
going either east or south; so if the removable ribbon has
length n, the corresponding hook must also have length n.
hook - (ibbon:

(Alternatively: push the hook up & right until it hits the edge of the diagram.)

 $(3) \Rightarrow (2)$ No hook length divisible by $n \Rightarrow no$ hook length equal to n.

Certainly $n \mid n$

(1) \Rightarrow (3): No hook length $n \Rightarrow$ no hook length divisible by n. Suppose K has a cell with hook length

by n. Suppose K has a cell with hook length Kn, & hence a removable nbbon of length Kn. Subdivide into R,, RK. (from NW to SE).
If R, is not removable: R, which is not removable: R, wh
If R, "blocking" R2:
\mathbb{R}_2
If R ₁ ,, R _{k-1} all non-removable, R _k must be blocking R _{k-1} , so R _{k-1} is not blocking R _k ; so R _k is removable.
removable kn-nbhon => removable n-nbaon

Note. $|K|_n$, also written |K|, is the number of cells in K with hook length $\angle N$.

Ex.
$$K = \begin{cases} \lambda_1 = \# \text{ pink, blue} = 2 \\ \lambda_2 = \# \text{ yellow} \end{cases} = 1$$

$$3 - core$$

$$\lambda = (2, 1)$$

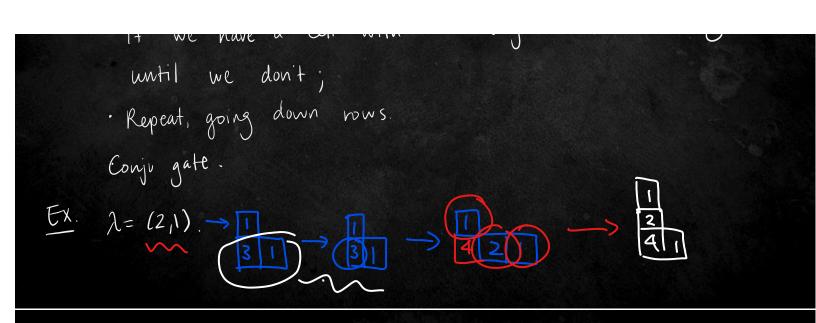
Pf Prop. First: P(K) is an (n-1)-bdd partition of m.

- λ_i counts cells in ith column that contribute to |K|; $\geq \lambda_i = m$.
- Hook length strictly increases as we go down; $\lambda_1 \leq n-1$.
- · To show λ is a partition, look at ith, (it1)st columns of K.

Examine the first pair with l < n,

l+k+1 > n+1. (@ l > n-k)

Below this pair, the $(i+1)^{st}$ column has at most hook lengths n-k, n-k+1,..., n-1.


So

 $\lambda_{i+1} \leq \lambda_i$.

i.e., I is a partition.

Now, to show p is a bijection: build an inverse! $c: \{ \lambda + m \mid \lambda \leq n-1 \} \longrightarrow \{ n-cores \ K \mid |K| = m \}$

- · Start at the top;
- · If we have a cell with hook length n, slide right until we don't:

Q: Does this really work (give us an n-core)?

Yes. I

Sliding to the right decreases hook length of original cells, and newly inserted cells have increased hook length.

Note: (n-1)-boundedness is important!

So we have a bijection

{n-cores} => {(n-1)-bodd partitions}.

