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Philosophy

“Combinatorics is the equivalent of nanotechnology in mathematics.”
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5. The Big Picture



Enumerative Geometry

Approximately 150 years ago. . . Grassmann, Schubert, Pieri, Giambelli, Severi,
and others began the study of enumerative geometry .

Early questions:
• What is the dimension of the intersection between two general lines in R2?

• How many lines intersect two given lines and a given point in R3?

• How many lines intersect four given lines in R3 ?

Modern questions:

• How many points are in the intersection of 2,3,4,. . . Schubert varieties in
general position?



Schubert Varieties

A Schubert variety is a member of a family of projective varieties which is defined
as the closure of some orbit under a group action in a homogeneous spaceG/H.

Typical properties:
• They are all Cohen-Macaulay, some are “mildly” singular.

• They have a nice torus action with isolated fixed points.

• This family of varieties and their fixed points are indexed by combinatorial
objects; e.g. partitions, permutations, or Weyl group elements.



Schubert Varieties

“Honey, Where are my Schubert varieties?”

Typical contexts:
• The Grassmannian Manifold , G(n, d) = GLn/P .

• The Flag Manifold: Gln/B.

• Symplectic and Orthogonal Homogeneous spaces: Sp2n/B, On/P

• Homogeneous spaces for semisimple Lie Groups: G/P .

• Affine Grassmannians: LG = G(C[z, z−1])/P̃ .

More exotic forms: matrix Schubert varieties, Richardson varieties, spherical
varieties, Hessenberg varieties, Goresky-MacPherson-Kottwitz spaces, positroids.



Why Study Schubert Varieties?

1. It can be useful to see points, lines, planes etc as families with certain
properties.

2. Schubert varieties provide interesting examples for test cases and future
research in algebraic geometry, combinatorics and number theory.

3. Applications in discrete geometry, computer graphics, computer vision,
and economics.



The Grassmannian Varieties

Definition. Fix a vector space V over C (or R, Qp,. . . ) with basis B =
{e1, . . . , en}. The Grassmannian variety

G(k, n) = {k-dimensional subspaces of V }.

Question.

How can we impose the structure of a variety or a manifold on this set?



The Grassmannian Varieties

Answer. Relate G(k, n) to the k × n matrices of rank k.

U =span〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4〉 ∈ G(3, 4)

MU =




6 3 0 0
4 0 2 0
9 0 1 1




• U ∈ G(k, n) ⇐⇒ rows of MU are independent vectors in V ⇐⇒
some k × k minor of MU is NOT zero.



Plücker Coordinates

• Define fj1,j2,...,jk to be the homogeneous polynomial given by the deter-
minant of the matrix




x1,j1 x1,j2 . . . x1,jk

x2,j1 x2,j2 . . . x2,jk
...

...
...

...
xkj1 xkj2 . . . xkjk




• G(k, n) is an open set in the Zariski topology on k×n matrices defined
as the union over all k-subsets of {1, 2, . . . , n} of the complements of
the varieties V (fj1,j2,...,jk).

• G(k, n) embeds in P(
n
k )) by listing out the Plücker coordinates.



The Grassmannian Varieties

Canonical Form. Every subspace in G(k, n) can be represented by a
unique k × n matrix in row echelon form.

Example.

U =span〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4〉 ∈ G(3, 4)

≈




6 3 0 0
4 0 2 0
9 0 1 1


 =




3 0 0
0 2 0
0 1 1






2 1 0 0
2 0 1 0
7 0 0 1




≈〈2e1 + e2, 2e1 + e3, 7e1 + e4〉



Subspaces and Subsets

Example.

U = RowSpan



5 9 h1 0 0 0 0 0 0 0
5 8 0 9 7 9 h1 0 0 0
4 6 0 2 6 4 0 3 h1 0


 ∈ G(3, 10).

position(U) = {3, 7, 9}

Definition.

If U ∈ G(k, n) and MU is the corresponding matrix in canonical form then
the columns of the leading 1’s of the rows of MU determine a subset of size k
in {1, 2, . . . , n} := [n]. There are 0’s to the right of each leading 1 and 0’s
above and below each leading 1. This k-subset determines the position of U
with respect to the fixed basis.



The Schubert Cell Cj in G(k, n)

Defn. Let j = {j1 < j2 < · · · < jk} ∈ [n]. A Schubert cell is

Cj = {U ∈ G(k, n) | position(U) = {j1, . . . , jk}}

Fact. G(k, n) =
⋃

Cj over all k-subsets of [n].

Example. In G(3, 10),

C{3,7,9} =







∗ ∗ h1 0 0 0 0 0 0 0
∗ ∗ 0 ∗ ∗ ∗ h1 0 0 0
∗ ∗ 0 ∗ ∗ ∗ 0 ∗ h1 0








• Observe, dim(C{3,7,9}) = 2 + 5 + 6 = 13.

• In general, dim(Cj) =
∑

ji − i.



Schubert Varieties in G(k, n)

Defn. Given j = {j1 < j2 < · · · < jk} ∈ [n], the Schubert variety is

Xλ = Closure of Cλ under Zariski topology.

Question. In G(3, 10), which minors vanish on C{3,7,9}?

C{3,7,9} =







∗ ∗ h1 0 0 0 0 0 0 0
∗ ∗ 0 ∗ ∗ ∗ h1 0 0 0
∗ ∗ 0 ∗ ∗ ∗ 0 ∗ h1 0








Answer. All minors fj1,j2,j3 with





4 ≤ j1 ≤ 8
or j1 = 3 and 8 ≤ j2 ≤ 9

or j1 = 3, j2 = 7 and j3 = 10





In other words, the canonical form for any subspace in Xj has 0’s to the right
of column ji in each row i.



k-Subsets and Partitions

Defn. A partition of a number n is a weakly increasing sequence of non-
negative integers

λ = (λ1 ≤ λ2 ≤ · · · ≤ λk)

such that n =
∑

λi = |λ|.

Partitions can be visualized by their Ferrers diagram

(2, 5, 6) −→

Fact. There is a bijection between k-subsets of {1, 2, . . . , n} and partitions
whose Ferrers diagram is contained in the k × (n − k) rectangle given by

shape : {j1 < . . . < jk} 7→ (j1 − 1, j2 − 2, . . . , jk − k).



A Poset on Partitions

Defn. A partial order or a poset is a reflexive, anti-symmetric, and transitive
relation on a set.

Defn. Young’s Lattice
If λ = (λ1 ≤ λ2 ≤ · · · ≤ λk) and µ = (µ1 ≤ µ2 ≤ · · · ≤ µk) then
λ ⊂ µ if the Ferrers diagram for λ fits inside the Ferrers diagram for µ.

⊂ ⊂

Facts.

1. Xj =
⋃

shape(i)⊂shape(j)

Ci.

2. The dimension of Xj is |shape(j)|.

3. The GrassmannianG(k, n) = X{n−k+1,...,n−1,n} is a Schubert variety!



Singularities in Schubert Varieties

Theorem. (Lakshmibai-Weyman) Given a partition λ. The singular locus of
the Schubert variety Xλ in G(k, n) is the union of Schubert varieties indexed
by the set of all partitions µ ⊂ λ obtained by removing a hook from λ.

Example. sing((X(4,3,1)) = X(4) ∪ X(2,2,1)

•
• • • •

• •

Corollary. Xλ is non-singular if and only if λ is a rectangle.



Enumerative Geometry Revisited

Question. How many lines intersect four given lines in R3 ?

Translation. Given a line in R3, the family of lines intersecting it can be
interpreted in G(2, 4) as the Schubert variety

X{2,4} =

(
∗ 1 0 0
∗ 0 ∗ 1

)

with respect to a suitably chosen basis determined by the line.

Reformulated Question. How many subspaces U ∈ G(2, 4) are in
the intersection of 4 copies of the Schubert variety X{2,4} each with respect to
a different basis?

Modern Solution. Use Schubert calculus!



Schubert Calculus/Intersection Theory

• Schubert varieties induce canonical basis elements of the cohomology ring
H∗(G(k, n)) called Schubert classes: [Xj].

• Multiplication in H∗(G(k, n)) is determined by intersecting Schubert
varieties with respect to generically chosen bases

[Xi][Xj] =
[
Xi(B

1) ∩ Xj(B
2)
]

• The entire multiplication table is determined by

Giambelli Formula: [Xi] = det
(
eλ′

i
−i+j

)
1≤i,j≤k

Pieri Formula: [Xi] er =
∑

[Xj]



Intersection Theory/Schubert Calculus

• Schubert varieties induce canonical basis elements of the cohomology ring
H∗(G(k, n)) called Schubert classes: [Xj].

• Multiplication in H∗(G(k, n)) is determined by intersecting Schubert
varieties with respect to generically chosen bases

[Xi][Xj] =
[
Xi(B

1) ∩ Xj(B
2)
]

• The entire multiplication table is determined by

Giambelli Formula: [Xi] = det
(
eλ′

i
−i+j

)
1≤i,j≤k

Pieri Formula: [Xi] er =
∑

[Xj]

where the sum is over classes indexed by shapes obtained from shape(i)
by removing a vertical strip of r cells.

• λ′ = (λ′
1, . . . , λ

′
k) is the conjugate of the box complement of shape(i).

• er is the special Schubert class associated to k× n minus r boxes along
the right col. er is a Chern class in the Chern roots x1, . . . , xn.



Intersection Theory/Schubert Calculus

Schur functions Sλ are a fascinating family of symmetric functions indexed by
partitions which appear in many areas of math, physics, theoretical computer
science, quantum computing and economics.

• The Schur functions Sλ are symmetric functions that also satisfy

Giambelli/Jacobi-Trudi Formula: Sλ = det
(
eλ′

i
−i+j

)
1≤i,j≤k

Pieri Formula: Sλ er =
∑

Sµ.

• Thus, as rings H∗(G(k, n)) ≈ C[x1, . . . , xn]
Sn/〈Sλ : λ 6⊂ k × n〉.

• Expanding the product of two Schur functions into the basis of Schur
functions can be done via linear algebra:

SλSµ =
∑

cνλ,µSν .

• The coefficients cνλ,µ are non-negative integers called the Littlewood-
Richardson coefficients.



Schur Functions

Let X = {x1, x2, . . . , xn} be an alphabet of indeterminants.

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) and λp = 0 for p ≥ k.

Defn. The following are equivalent definitions for the Schur functions Sλ(X):

1. Sλ = det
(
eλ′

i
−i+j

)
= det (hλi−i+j)

2. Sλ =
det(x

λj+n−j

i
)

det(x
n−j

i
)

with indices 1 ≤ i, j ≤ m.

3. Sλ =
∑

xT summed over all column strict tableaux T of shape λ.

4. Sλ =
∑

FD(T )(X) summed over all standard tableaux T of shape λ.



Schur Functions

Defn. Sλ =
∑

FD(T )(X) over all standard tableaux T of shape λ.

Defn. A standard tableau T of shape λ is a saturated chain in Young’s lattice
from ∅ to λ. The descent set of T is the set of indices i such that i+1 appears
northwest of i.

Example.

T = 7
4 5 9
1 2 3 6 8

D(T ) = {3, 6, 8}.

Defn. The fundamental quasisymmetric function

FD(T )(X) =
∑

xi1 · · ·xip

summed over all 1 ≤ i1 ≤ . . . ≤ ip such that ij < ij+1 whenever j ∈ D(T ).



Littlewood-Richardson Rules

Recall if SλSµ =
∑

cνλ,µSν , then the coefficients cνλ,µ are non-negative inte-
gers called Littlewood-Richardson coefficients.

Littlewood-Richardson Rules.
1. Schützenberger: Fix a standard tableau T of shape ν. Then cνλ,µ equals

the number of pairs of standard tableaux of shapes λ, µ which straighten
under the rules of jeu de taquin into T .

2. Yamanouchi Words: cνλ,µ equals the number of column strict fillings of
the skew shape ν/µ with λ1 1’s, λ2 2’s, etc such that the reverse reading
word always has more 1’s than 2’s, more 2’s than 3’s, etc.

3. Remmel-Whitney rule: cνλ,µ equals the number of leaves of shape ν in
the tree of standard tableaux with root given by the standard labeling of
λ and growing on at each level respecting two adjacency rules.

4. Knutson-Tao Puzzles: cνλ,µ equals the number of λ, µ, ν - puzzles.

5. Vakil Degenerations: cνλ,µ equals the number of leaves in the λ, µ-tree of
checkerboards with type ν.



Knutson-Tao Puzzles

Example. (Warning: picture is not accurate without description.)



Vakil Degenerations

Show picture.



Enumerative Solution

Reformulated Question. How many subspaces U ∈ G(2, 4) are in
the intersection of 4 copies of the Schubert variety X{2,4} each with respect to
a different basis?



Enumerative Solution

Reformulated Question. How many subspaces U ∈ G(2, 4) are in
the intersection of 4 copies of the Schubert variety X{2,4} each with respect to
a different basis?

Solution. [
X{2,4}

]
= S(1) = x1 + x2 + . . .

By the recipe, compute

[
X{2,4}(B

1) ∩ X{2,4}(B
2) ∩ X{2,4}(B

3) ∩ X{2,4}(B
4)
]

= S4
(1) = 2S(2,2) + S(3,1) + S(2,1,1).

Answer. The coefficient of S2,2 = [X1,2] is 2 representing the two lines
meeting 4 given lines in general position.



Recap

1. G(k, n) is the Grassmannian variety of k-dim subspaces in Rn.

2. The Schubert varieties in G(k, n) are nice projective varieties indexed by
k-subsets of [n] or equivalently by partitions in the k×(n−k) rectangle.

3. Geometrical information about a Schubert variety can be determined by
the combinatorics of partitions.

4. Schubert Calculus (intersection theory applied to Schubert varieties and
associated algorithms for Schur functions) can be used to solve problems
in enumerative geometry.



Current Research

1. (Gelfand-Goresky-MacPherson-Serganova) Matroid stratification ofG(k, n):
specify the complete list of Plücker coordinates which are non-zero. What
is the cohomology class of the closure of each strata?

2. (Kodama-Williams, Telaska-Williams) Deodhar stratification using Go-
diagrams. What is the cohomology class of the closure of each strata?

3. (MacPherson) What is a good way to triangulate Gr(k,n)?



The Flag Manifold

Defn. A complete flag F• = (F1, . . . , Fn) in Cn is a nested sequence of
vector spaces such that dim(Fi) = i for 1 ≤ i ≤ n. F• is determined by an
ordered basis 〈f1, f2, . . . fn〉 where Fi = span〈f1, . . . , fi〉.

Example.

F• =〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4, e2〉
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The Flag Manifold

Canonical Form.

F• =〈6e1 + 3e2, 4e1 + 2e3, 9e1 + e3 + e4, e2〉

≈




6 3 0 0
4 0 2 0
9 0 1 1
0 1 0 0


 =




3 0 0 0
0 2 0 0
0 1 1 0
1 0 0 −2







2 1 0 0
2 0 1 0
7 0 0 1
1 0 0 0




≈〈2e1 + e2, 2e1 + e3, 7e1 + e4, e1〉

Fln(C) := flag manifold over Cn ⊂
∏n

k=1 G(n, k)

={complete flags F•}

= B \ GLn(C), B = lower triangular mats.



Flags and Permutations

Example. F• = 〈2e1+e2, 2e1+e3, 7e1+e4, e1〉 ≈




2 h1 0 0
2 0 h1 0
7 0 0 h1
h1 0 0 0




Note. If a flag is written in canonical form, the positions of the leading 1’s
form a permutation matrix. There are 0’s to the right and below each leading
1. This permutation determines the position of the flag F• with respect to the
reference flag E• = 〈e1, e2, e3, e4 〉.
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Many ways to represent a permutation




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 =

[
1 2 3 4
2 3 4 1

]
= 2341 =




0 1 1 1
0 1 2 2
0 1 2 3
1 2 3 4




matrix
notation

two-line
notation

one-line
notation

rank
table

∗ . . .
∗ . . .
∗ . . .
. . . .

= = (1, 2, 3) = #9

1234

2341

diagram of a
permutation

string diagram
reduced
word

position in
lex order



The Schubert Cell Cw(E•) in Fln(C)

Defn. Cw(E•) = All flags F• with position(E•, F•) = w

= {F• ∈ Fln | dim(Ei ∩ Fj) = rk(w[i, j])}

Example. F• =




2 h1 0 0
2 0 h1 0
7 0 0 h1
h1 0 0 0


 ∈ C2341 =








∗ 1 0 0
∗ 0 1 0
∗ 0 0 1
1 0 0 0


 : ∗ ∈ C





Easy Observations.
• dimC(Cw) = l(w) = # inversions of w.

• Cw = w · B is a B-orbit using the right B action, e.g.















0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0





























b1,1 0 0 0

b2,1 b2,2 0 0

b3,1 b3,2 b3,3 0

b4,1 b4,2 b4,3 b4,4















=















b2,1 b2,2 0 0

b3,1 b3,2 b3,3 0

b4,1 b4,2 b4,3 b4,4

b1,1 0 0 0

















The Schubert Variety Xw(E•) in Fln(C)

Defn. Xw(E•) = Closure of Cw(E•) under the Zariski topology

= {F• ∈ Fln | dim(Ei ∩ Fj)≥rk(w[i, j])}

where E• = 〈e1, e2, e3, e4 〉.

Example.




h1 0 0 0
0 ∗ h1 0
0 ∗ 0 h1
0 h1 0 0


 ∈ X2341(E•) =








∗ 1 0 0
∗ 0 1 0
∗ 0 0 1
1 0 0 0








Why?.

�
�
�
�����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
��������������

����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������������������� ��
��
��
��

����



Five Fun Facts

Fact 1. The closure relation on Schubert varieties defines a nice partial order.

Xw =
⋃

v≤w

Cv =
⋃

v≤w

Xv

Bruhat order (Ehresmann 1934, Chevalley 1958) is the transitive closure of

w < wtij ⇐⇒ w(i) < w(j).

Example. Bruhat order on permutations in S3.

132

231

123

321

213

312

�
�
�

@@��

@@ ��

@
@
@

Observations. Self dual, rank symmetric, rank unimodal.



Bruhat order on S4

4 2 3 1

3 1 2 4

4 2 1 3

1 2 3 4

3 4 2 1

1 2 4 3

3 2 1 4

2 1 3 4

2 3 1 4

3 2 4 12 4 3 1

2 3 4 1 4 1 2 3

4 1 3 2

1 4 2 3

1 4 3 2

4 3 1 2

3 1 4 2

1 3 4 2

3 4 1 2

2 1 4 3

1 3 2 4

2 4 1 3

4 3 2 1



Bruhat order on S5

(3 4 2 1 5)

(2 4 1 5 3)

(3 4 2 5 1)

(4 5 3 1 2)

(4 1 3 5 2)

(2 3 4 1 5)

(3 4 1 2 5)

(4 2 1 5 3)

(3 5 4 1 2)

(1 5 3 2 4) (2 3 4 5 1)

(5 3 4 1 2)

(5 1 3 2 4)

(2 4 5 3 1)

(4 1 3 2 5)

(2 1 4 3 5)

(2 5 3 1 4)

(5 4 1 2 3)

(5 2 1 3 4)

(2 5 4 1 3)

(3 5 4 2 1)

(5 1 4 3 2)

(1 3 4 2 5)

(5 4 1 3 2)

(1 5 4 2 3)

(3 1 4 2 5)

(5 4 2 3 1) (4 5 3 2 1)

(1 4 2 3 5)

(5 3 4 2 1)

(1 2 3 5 4)

(2 5 4 3 1)

(1 3 5 4 2)

(1 2 4 5 3)

(2 1 5 4 3)

(3 1 5 4 2) (2 4 3 5 1)

(5 2 3 4 1)

(1 4 3 5 2)

(2 3 5 4 1)

(2 4 3 1 5)

(3 2 4 5 1)

(5 1 4 2 3)

(5 4 3 1 2)

(2 4 1 3 5)

(1 5 4 3 2)

(2 3 5 1 4)(4 2 1 3 5)

(4 2 3 5 1)

(4 2 3 1 5)

(5 4 2 1 3)

(1 2 3 4 5)

(4 1 5 2 3)

(5 2 3 1 4)

(3 2 4 1 5)

(1 2 4 3 5)

(5 2 4 1 3) (4 3 5 1 2)

(5 4 3 2 1)

(2 1 5 3 4)(1 4 3 2 5)

(4 1 5 3 2)

(5 2 4 3 1)

(1 3 5 2 4)

(2 3 1 4 5)

(1 2 5 4 3)

(3 1 5 2 4)

(5 3 1 4 2)

(1 5 2 4 3)

(4 3 5 2 1)

(3 5 2 4 1)

(5 1 2 4 3)

(1 3 2 4 5)

(2 3 1 5 4)

(3 2 5 1 4)

(3 1 2 4 5)

(4 1 2 5 3)

(5 3 2 1 4)

(2 5 1 4 3)

(5 3 2 4 1)

(3 5 2 1 4)

(1 3 2 5 4)

(3 5 1 4 2)

(1 4 5 2 3)

(3 1 2 5 4)

(3 2 5 4 1)

(3 5 1 2 4)

(4 3 2 5 1)

(4 3 2 1 5) (5 3 1 2 4) (4 3 1 5 2) (3 4 5 1 2)

(1 4 5 3 2)(2 4 5 1 3)

(3 4 5 2 1)

(4 1 2 3 5)

(4 5 2 1 3)

(4 3 1 2 5)

(3 2 1 4 5)

(4 2 5 1 3)

(2 5 1 3 4)

(2 5 3 4 1)(4 5 1 2 3) (5 2 1 4 3)

(1 4 2 5 3)

(1 2 5 3 4)

(1 5 3 4 2)

(1 3 4 5 2)(1 5 2 3 4)

(2 1 3 4 5)

(3 1 4 5 2)(5 1 2 3 4)

(2 1 3 5 4)

(3 2 1 5 4)

(4 5 1 3 2)

(2 1 4 5 3)

NIL

(4 5 2 3 1)

(3 4 1 5 2)

(4 2 5 3 1)

(5 1 3 4 2)



10 Fantastic Facts on Bruhat Order

1. Bruhat Order Characterizes Inclusions of Schubert Varieties

2. Contains Young’s Lattice in S∞

3. Nicest Possible Möbius Function

4. Beautiful Rank Generating Functions

5. [x, y] Determines the Composition Series for Verma Modules

6. Symmetric Interval [0̂, w] ⇐⇒ X(w) rationally smooth

7. Order Complex of (u, v) is shellable

8. Rank Symmetric, Rank Unimodal and k-Sperner

9. Efficient Methods for Comparison

10. Amenable to Pattern Avoidance



Singularities in Schubert Varieties

Defn. Xw is singular at a point p ⇐⇒
dimXw = l(w) < dimension of the tangent space to Xw at p.

Observation 1. Every point on a Schubert cell Cv in Xw looks locally the
same. Therefore, p ∈ Cv is a singular point ⇐⇒ the permutation matrix v
is a singular point of Xw.

Observation 2. The singular set of a varieties is a closed set in the Zariski
topology. Therefore, if v is a singular point in Xw then every point in Xv is
singular. The irreducible components of the singular locus of Xw is a union of
Schubert varieties:

Sing(Xw) =
⋃

v∈maxsing(w)

Xv.



Singularities in Schubert Varieties

Fact 2. (Lakshmibai-Seshadri) A basis for the tangent space to Xw at v is
indexed by the transpositions tij such that

vtij ≤ w.

Definitions.
• Let T = invertible diagonal matrices. The T -fixed points in Xw are the
permutation matrices indexed by v ≤ w.

• If v, vtij are permutations in Xw they are connected by a T -stable curve.
The set of all T -stable curves in Xw are represented by the Bruhat graph
on [id, w].



Bruhat Graph in S4

(2 3 4 1)(2 4 1 3)

(1 2 3 4)

(1 3 4 2)(1 4 2 3)

(3 2 4 1)(2 4 3 1)

(2 1 3 4)

(4 2 1 3)

(1 4 3 2) (3 1 4 2) (3 2 1 4)

(2 3 1 4)

(4 1 2 3)

(1 3 2 4)

(3 1 2 4)

(3 4 1 2)

(4 2 3 1) (3 4 2 1)

(2 1 4 3)

(1 2 4 3)

(4 3 1 2)

(4 1 3 2)

(4 3 2 1)



Tangent space of a Schubert Variety

Example. T1234(X4231) = span{xi,j | tij ≤ w}.

(4 2 3 1)

(2 1 3 4)

(1 2 3 4)

(2 4 3 1)

(3 2 1 4)

(4 1 3 2)(3 2 4 1)

(1 4 3 2)(4 1 2 3)(3 1 4 2)

(1 4 2 3)

(1 3 2 4)

(1 3 4 2)

(4 2 1 3)

(2 1 4 3)

(1 2 4 3)

(2 4 1 3)

(2 3 1 4)(3 1 2 4)

(2 3 4 1)

dimX(4231)=5 dimTid(4231) = 6 =⇒ X(4231) is singular!



Five Fun Facts

Fact 3. There exists a simple criterion for characterizing singular Schubert
varieties using pattern avoidance.

Theorem: Lakshmibai-Sandhya 1990 (see also Haiman, Ryan, Wolper)
Xw is non-singular ⇐⇒ w has no subsequence with the same relative order
as 3412 and 4231.

Example:
w = 625431 contains 6241 ∼ 4231 =⇒ X625431 is singular
w = 612543 avoids 4231 =⇒ X612543 is non-singula

&3412



Five Fun Facts

Fact 4. There exists a simple criterion for characterizing Gorenstein Schubert
varieties using modified pattern avoidance.

Theorem: Woo-Yong (Sept. 2004)

Xw is Gorenstein ⇐⇒

• w avoids 31542 and 24153 with Bruhat restrictions {t15, t23} and
{t15, t34}

• for each descent d in w, the associated partition λd(w) has all of its inner
corners on the same antidiagonal.

See “A Unification Of Permutation Patterns Related To Schubert Varieties” by
Henning Úlfarsson (arxiv 2012).



Five Fun Facts

Fact 5. Schubert varieties are useful for studying the cohomology ring of the
flag manifold.

Theorem (Borel): H∗(Fln) ∼=
Z[x1, . . . , xn]

〈e1, . . . en〉
.

• The symmetric function ei =
∑

1≤k1<···<ki≤n

xk1
xk2

. . . xki
.

• {[Xw] | w ∈ Sn} form a basis for H∗(Fln) over Z.

Question. What is the product of two basis elements?

[Xu] · [Xv] =
∑

[Xw]cwuv.



Cup Product in H∗(Fln)

One Answer. Use Schubert polynomials! Due to Lascoux-Schützenberger,
Bernstein-Gelfand-Gelfand, Demazure.

• BGG: Set [Xid] ≡
∏

i>j

(xi − xj) ∈
Z[x1, . . . , xn]

〈e1, . . . en〉

If Sw ≡ [Xw]mod〈e1, . . . en〉 then

∂iSw =
Sw − siSw

xi − xi+1

≡ [Xwsi
] if l(w) < l(wsi)

• LS: Choosing [Xid] ≡ xn−1
1 xn−2

2 · · ·xn−1 works best because product
expansion can be done without regard to the ideal!

• Here deg[Xw] = codim(Xw).



Schubert polynomials for S4

Sw0(1234) = 1
Sw0(2134) = x1

Sw0(1324) = x2 + x1

Sw0(3124) = x2
1

Sw0(2314) = x1x2

Sw0(3214) = x2
1x2

Sw0(1243) = x3 + x2 + x1

Sw0(2143) = x1x3 + x1x2 + x2
1

Sw0(1423) = x2
2 + x1x2 + x2

1

Sw0(4123) = x3
1

Sw0(2413) = x1x
2
2 + x2

1x2

Sw0(4213) = x3
1x2

Sw0(1342) = x2x3 + x1x3 + x1x2

Sw0(3142) = x2
1x3 + x2

1x2

Sw0(1432) = x2
2x3 + x1x2x3 + x2

1x3 + x1x
2
2 + x2

1x2

Sw0(4132) = x3
1x3 + x3

1x2

Sw0(3412) = x2
1x

2
2

Sw0(4312) = x3
1x

2
2

Sw0(2341) = x1x2x3

Sw0(3241) = x2
1x2x3

Sw0(2431) = x1x
2
2x3 + x2

1x2x3
3



Cup Product in H∗(Fln)

Key Feature. Schubert polynomials are a positive sum of monomials and
have distinct leading terms, therefore expanding any polynomial in the basis of
Schubert polynomials can be done by linear algebra just like Schur functions.

Buch: Fastest approach to multiplying Schubert polynomials uses Lascoux and
Schützenberger’s transition equations. Works up to about n = 15.

Draw Back. Schubert polynomials don’t prove cwuv’s are nonnegative (ex-
cept in special cases).



Cup Product in H∗(Fln)

Another Answer.

• By intersection theory: [Xu] · [Xv] = [Xu(E•) ∩ Xv(F•)]

• Perfect pairing: [Xu(E•)] · [Xv(F•)] · [Xw0w(G•)] = cwuv[Xid]

||

[Xu(E•) ∩ Xv(F•) ∩ Xw0w(G•)]

• The Schubert variety Xid is a single point in Fln.

Intersection Numbers: cwuv = #Xu(E•) ∩ Xv(F•) ∩ Xw0w(G•)
Assuming all flags E•, F•, G• are in sufficiently general position.



Intersecting Schubert Varieties

Example. Fix three flags R•, G•, and B•:

��
��
��
���

�
�
�

�
�
�
�

Find Xu(R•)∩Xv(G•) ∩Xw(B•) where u, v, w are the following permu-
tations:

R1 R2 R3 G1 G2 G3 B1 B2 B3

P 1

P 2

P 3

1
1

1

1
1

1

1
1

1



Intersecting Schubert Varieties
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Intersecting Schubert Varieties

Example. Fix three flags R•, G•, and B•:
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�
�
�
�

Find Xu(R•)∩Xv(G•) ∩Xw(B•) where u, v, w are the following permu-
tations:

R1 R2 R3 G1 G2 G3 B1 B2 B3

P 1

P 2

P 3

1
1

1

1
1

1

1
1

1



Intersecting Schubert Varieties

Schubert’s Problem. How many points are there usually in the inter-
section of d Schubert varieties if the intersection is 0-dimensional?

• Solving approx. nd equations with

(
n
2

)
variables is challenging!

Observation. We need more information on spans and intersections of flag
components, e.g. dim(E1

x1
∩ E2

x2
∩ · · · ∩ Ed

xd
).



Permutation Arrays

Theorem. (Eriksson-Linusson, 2000) For every set of d flagsE1
• , E

2
• , . . . , E

d
• ,

there exists a unique permutation array P ⊂ [n]d such that

dim(E1
x1

∩ E2
x2

∩ · · · ∩ Ed
xd

) = rkP [x].

����
��

�
�
�
�

R1 R2 R3 R1 R2 R3 R1 R2 R3

B1

B2

B3 h1 1 1

h1
1 1 2

h1
h1 2

1 2 3

G1 G2 G3



Totally Rankable Arrays

Defn. For P ⊂ [n]d,

• rkjP = #{k | ∃x ∈ P s.t. xj = k}.

• P is rankable of rank r if rkj(P ) = r for all 1 ≤ j ≤ d.

• y = (y1, . . . , yd) � x = (x1, . . . , xd) if yi ≤ xi for each i.

• P [x] = {y ∈ P | y � x}

• P is totally rankable if P [x] is rankable for all x ∈ [n]d.

•
•

X

•
•

1 1 1
1

1 1 2

1
1 2

1 2 3

• Union of dots is totally rankable. Including X it is not.



Permutation Arrays

•
•

•
• O
O

1 1 1
1

1 1 2

1
1 2

1 2 3

• Points labeled O are redundant, i.e. including them gives another totally
rankable array with same rank table.

Defn. P ⊂ [n]d is a permutation array if it is totally rankable and has no
redundant dots.

•
•

•
•

∈ [4]2.

Open. Count the number of permutation arrays in [n]k.



Permutation Arrays

Theorem. (Eriksson-Linusson) Every permutation array in [n]d+1 can be
obtained from a unique permutation array in [n]d by identifying a sequence of
antichains.

sh

sh

sh

•
sh

•

sh
sh

•
•

This produces the 3-dimensional array

P = {(4, 4, 1), (2, 4, 2), (4, 2, 2), (3, 1, 3), (1, 4, 4), (2, 3, 4)}.

4
4 2

3
2 1



Unique Permutation Array Theorem

Theorem.(Billey-Vakil, 2005) If

X = Xw1(E1
•) ∩ · · · ∩ Xwd(Ed

•)

is nonempty 0-dimensional intersection of d Schubert varieties with respect to
flags E1

• , E
2
• , . . . , E

d
• in general position, then there exists a unique permuta-

tion array P ∈ [n]d+1 such that

X = {F• | dim(E1
x1

∩ E2
x2

∩ · · · ∩ Ed
xd

∩ Fxd+1
) = rkP [x].} (1)

Furthermore, we can recursively solve a family of equations for X using P .



Current Research

Open Problem. Can one find a finite set of rules for moving dots in a 3-d
permutation array which determines the cwuv’s analogous to one of the many
Littlewood-Richardson rules?

Recent Progress/Open question. Izzet Coskun’s Mondrian tableaux.
Can his algorithm be formulated succinctly enough to program without solving
equations?

Open Problem. Give a minimal list of relations for H∗(Xw). (See recent
work of Reiner-Woo-Yong.)



Generalizations of Schubert Calculus for G/B

1993-2013: A Highly Productive Score.





A: GLn

B: SO2n+1

C: SP2n

D: SO2n

Semisimple Lie Groups
Kac-Moody Groups
GKM Spaces





×





cohomology
quantum
equivariant
K-theory
eq. K-theory





Recent Contributions from: Bergeron, Berenstein, Billey, Brion, Buch, Carrell,
Ciocan-Fontainine, Coskun, Duan, Fomin, Fulton, Gelfand, Goldin, Graham,
Griffeth, Guillemin, Haibao, Haiman, Holm, Huber, Ikeda, Kirillov, Knutson,
Kogan, Kostant, Kresh, S. Kumar, A. Kumar, Lam, Lapointe, Lascoux, Lenart,
Miller, Morse, Naruse, Peterson, Pitti, Postnikov, Purhboo, Ram, Richmond,
Robinson, Shimozono, Sottile, Sturmfels, Tamvakis, Thomas, Vakil, Winkle,
Woodward, Yong, Zara. . .



Some Recommended Further Reading

1. “Schubert Calculus” by Steve Kleiman and Dan Laksov. The American
Mathematical Monthly, Vol. 79, No. 10. (Dec., 1972), pp. 1061-1082.

2. “The Symmetric Group” by Bruce Sagan, Wadsworth, Inc., 1991.

3. ”Young Tableaux” by William Fulton, London Math. Soc. Stud. Texts,
Vol. 35, Cambridge Univ. Press, Cambridge, UK, 1997.

4. “Determining the Lines Through Four Lines” by Michael Hohmeyer and
Seth Teller, Journal of Graphics Tools, 4(3):11-22, 1999.

5. “Honeycombs and sums of Hermitian matrices” by Allen Knutson and
Terry Tao. Notices of the AMS, February 2001; awarded the Conant prize
for exposition.



Some Recommended Further Reading

6. “A geometric Littlewood-Richardson rule” by Ravi Vakil, Annals of Math.
164 (2006), 371-422.

7. “Flag arrangements and triangulations of products of simplices” by Sara
Billey and Federico Ardila, Adv. in Math, volume 214 (2007), no. 2,
495–524.

8. “A Littlewood-Richardson rule for two-step flag varieties” by Izzet Coskun.
Inventiones Mathematicae, volume 176, no 2 (2009) p. 325–395.

9. “A Littlewood-Richardson Rule For Partial Flag Varieties” by Izzet Coskun.
Manuscript. http://homepages.math.uic.edu/~coskun/.

10. “Sage:Creating a Viable Free Open Source Alternative to Magma, Maple,
Mathematica, and Matlab” by William Stein. http://wstein.org/books/
sagebook/sagebook.pdf, Jan. 2012.

Generally, these published papers can be found on the web. The books are well
worth the money.


