1 Introduction

Heegaard Floer homology \hat{H}, Khovanov homology \tilde{K}:

- Used in applications such as
 - Knot concordance
 - Dehn surgery
 - Contact geometry

- Different philosophies for theory's constructions
 - Ozsváth-Szabó discovered algebraic relationship between homologies

\[
\begin{align*}
\text{[Khovanov-type chain complex]} & \leftrightarrow \text{[Heegaard Floer-type chain complex assoc. to link]} \\
\text{[assoc. to link]} & \leftrightarrow \text{[to double-branched cover]}
\end{align*}
\]

For a link $L \subset S^3$ a spectral sequence whose

- E^2 term $= \tilde{K}(L)$
- E^∞ term $= \hat{H}(\Sigma(S^3, L))$

Where \tilde{K} denotes reduced Khovanov homology
\hat{H} denotes mirror of L
$\Sigma(A,B)$ denotes double-branched cover of A branched over B
\hat{H} denotes Heegaard Floer homology

https://ucdavis365-my.sharepoint.com/personal/tmscroggin_ucdavis_edu/_layouts/15/Doc.aspx?sourcedoc={9c0c3b7d-5f9f-4cd6-88b2-c66cd4046b7... 1/7
NOTE: Unless explicitly stated all Khovanov & Heegaard Floer homologies have coefficients in \(\mathbb{Z}_2 \)

- Roberts building off of Plamenevskaya relationship more useful & general than originally thought

- Given a link \(L \) in the complement of a fixed unknot, \(BC \subset S^3 \)
 - \(\exists \) a spectral sequence from \(\text{Kh}^*(L) \) to a variant of knot Floer homology of \(B \subset \Sigma(S^3, L) \)
 - where \(B \) is preimage of \(B \) in \(\Sigma(S^3, L) \)

- Established relationship \(\text{Kh} \) \(\xrightarrow{\text{Plamenevskaya's transverse invariant}} \text{Osváth-Szabó contact invariant} \)

- Baldwin & Plamenevskaya used extension of relationship to establish tightness of a number of non Stein-fillable contact structures.

- Grigsby & Wehlau (different direction)

 Heegaard Floer homology for sutured manifolds (developed by Juhász)
 - simple variant of Khovanov homology categorifying the reduced, \(n \)-colored Jones polynomial
\[\text{detects unknot whenever } n \geq 2 \]

Goal: Unify all these results

\text{NOTE: Framework uses Gabaï's sutured manifold theory and Juhász's sutured Floer homology}

Very nice! Can be shown to satisfy nice neutrality props. WRT certain TQFT operations

Let \(F \) be oriented surface w/ \(\partial F \neq \emptyset \), \(F \times I \) a product sutured manifold, \(T \subset F \times I \) a tangle (properly embedded 1-mfld) that is BOTH
- admissible: \(T \cap (\partial F \times I) = \emptyset \)
- balanced: \(|T \cap (F \times \{0\})| = |T \cap (F \times \{1\})| = n \in \mathbb{Z} \geq 0 \)

Then exists spectral sequence whose \(E^2 \) term = \(\text{Kh}^*(T) \)
\(E^\infty \) term = \(\text{SFH}(\Sigma (F \times I, T)) \)

\text{NOTE: The appropriate version of Khovanov homology for balanced tangles in product sutured manifolds is similar to [1] with abelianized...}
gradings where \(F = A \) (an annulus)
\(T = L \) is a 0-balanced tangle (link)

Main Theorems:

Thm 2.1: Let \(L \subset A \times I \) be a link in the product sutured mfld \(A \times I \), then there is a spectral sequence whose \(E^2 \) term is \(KH_*^*(L) \) whose \(E^\infty \) term is \(SFH(\Sigma(A \times I, L)) \).

NOTE: case when \(F = D \) in [6]

NOTE: Reinterpretation (slight extension) of Robert Main Result

Thm 1.1: [6, Prop 5.20] Let \(T \subset D \times I \) be an admissible balanced tangle. Then there is a spectral sequence whose \(E^2 \) term is \(KH_*^*(T) \) whose \(E^\infty \) term is \(SFH(\Sigma(D \times I, T)) \).

NOTE: Roberts restricts to \(L \) intersecting a spanning disk of \(B \) in odd # of pt
But Thm 1.1 makes NO restriction

Connection:

Let \(A \) be oriented annulus
\(I = [0,1] \) oriented closed unit inter
\(L \subset A \times I \) link

where \(A \times I \) identified as std sutured complement of standardly -imbeded unknot \(B \subset S^3 \) w/ identification

\[\Delta \times T \subset \Sigma(A \times I, \partial_m) \]
Robert's constructs spectral sequence
\[Kh^+(L) \rightarrow \text{Knot Floer homology} \]
(for links in)
(product mfld)
\(B \subset \Sigma(S^3, L) \) (\(B \) preimage of \(B \subset \Sigma \))
\[\rightarrow \text{prop 2.24 shows that this } \]
\(\text{Knot Floer homology of } \widetilde{B} \text{ is the } \)
\(\text{sutured Floer homology of } \Sigma(A) \)

NOTE: nice relationship b/w spectral seqs
Thm 1.1 & Thm 2.1

\[\rightarrow \text{A link } \text{LCA} \times I \text{ can be cut an } \]
\(\text{vertical disk to form admissible } \)
\(\text{balanced tangle } \text{TCD} \times I \)

Thm 3.1: Let \(\text{LCA} \times I \) be an isotopy class represen-
\(\text{of an annular link admitting a projectiv} \)
P(\(L \)) & let \(\lambda \text{ CA} \) be a properly imbedded
oriented arc representing a nontrivial element of $H_1(A,aA)$ s.t. A intersect $P(L)$ transversely. Let $T \subset D \times I$ be the balanced tangle in $D \times I$ obtained by decomposing $A \times I$ (def 2.8) along the sur $\lambda \times I$ endowed w/ the product orientation.

Then the spectral sequence

$$Kh^\ast(T) \to SFH(\Sigma(D \times I, T))$$

is a direct summand of the spectral sequence

$$Kh^\ast(T) \to SFH(\Sigma(A \times I, L))$$

Moreover, the direct summand is trivial if $\exists L' \subset A \times I$ isotopic to L satisfying

$$|1(A \times I) \cup L' | \triangleq |(A \times I) \cup L |$$

NOTE: 1st example of "naturality" of relations btwn Kh & Heegaard Floer homology (under natural geometric operations) the spectral sequences behaves "as expected".

Interesting note: Given link $L \subset S^3$, any unknot $B \subset S^3 - N(L)$ endows the Khovanov chain complex associated to $L \subset B^3$ w/ \mathbb{Z}-filtration, via the identification
$S^3 - N(B) \leftrightarrow A \times I$

The extra grading inducing \mathbb{Z}-filtration has representation-theoretic interpretation.

Suppose $T \subset D \times I$ is an n-balanced tangle obtained by decomposing $L \subset A \times I$ along $\lambda \times I$.

https://ucdavis365-my.sharepoint.com/personal/tmscroggin_uccdavis_edu/_layouts/15/Doc.aspx?srcedoc=9c0c3b7d-5f5f-44d6-88b2-c66c4d046b7