

Meeting 5

Monday, February 6, 2023 3:13 PM

Recap:

$$B_i = \left| \dots \begin{array}{c} \diagup \diagdown \\ \diagdown \diagup \end{array} \dots \right|_{i \ i+1 \ n}$$

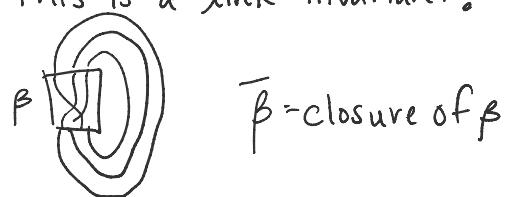
$$T_i = \left| \dots \begin{array}{c} \diagup \diagdown \\ \diagup \diagdown \end{array} \dots \right|_{i \ i+1 \ n}$$

$$T_i^{-1} = \left| \dots \begin{array}{c} \diagdown \diagup \\ \diagdown \diagup \end{array} \dots \right|_{i \ i+1 \ n}$$

β braid \rightsquigarrow product of T_i^\pm = complex of
 T_β R-R bimodules
 $HHH(\beta) = R \text{ Hom}(R, T_\beta)$

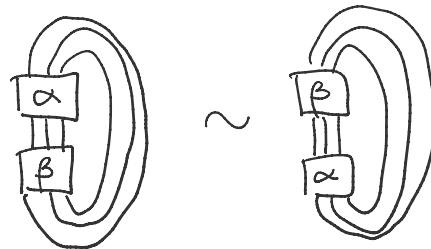
Properties:

i) This is a link invariant!

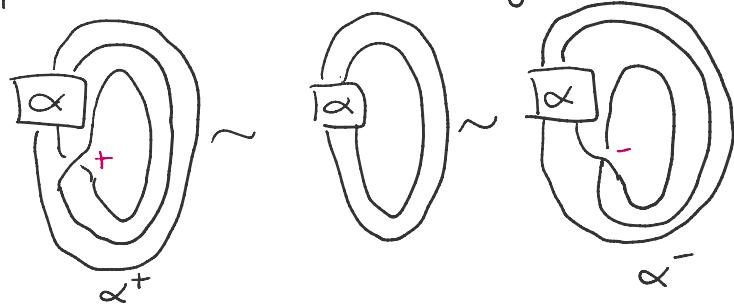


Idea: Markov Thm: Any two braids representing same link are related by a sequence of moves:

M1) $\alpha\beta \sim \beta\alpha$



M2) positive stabilization $\not\sim$ negative stabilization



Fact:

1) **Exercise:** $M, N \in R\text{-}R$ bimodules

$$R\text{Hom}(R, M \otimes N) \simeq R\text{Hom}(R, N \otimes M)$$

↪ as a vector space

$\Rightarrow (M1)$ is true

2) Positive stabilization preserves all degrees

$$R\text{Hom}^i(\alpha) = R\text{Hom}^i(\alpha^+)$$

Negative stabilization shifts all degrees

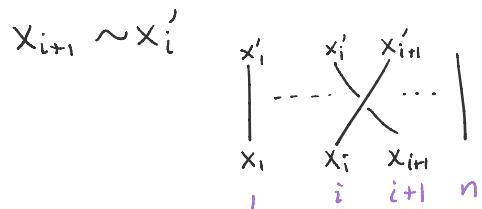
in particular

$$R\text{Hom}^i(\alpha) \approx R\text{Hom}^{i+1}(\alpha^-)$$

Cor: $\text{Hom}(R, T_\beta) = "a=0"$ part of HHH
is invariant under positive stabilization
but NOT under negative stabilization.

3) R -action

lemma: For T_i^\pm , the action of x_i is homotopic to the action of x'_{i+1}



Recall: C° = chain complex

$f, g: C^\circ \rightarrow C^\circ$ (chain maps $df = fd \wedge dg = gd$)

are chain homotopic if there is h

s.t. $dh \pm hd = f - g$

$(\Rightarrow f, g \text{ act same way in } H_*(C^\circ))$

proof (lemma):

$$T_i = B_i \xrightarrow{b_i} R \quad \xleftarrow{b_i^*}$$

$$b_i(1 \otimes 1) = 1$$

$$b_i^*(1) = x_i - x_{i+1}'$$

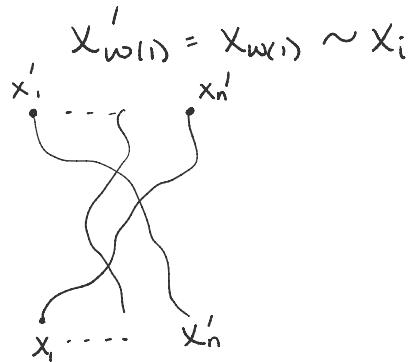
Can use $b_i^* = h$ as the homotopy b/w $x_i \not\sim x_{i+1}'$

$$b_i b_i^* = b_i^* b_i = x_i - x_{i+1}'$$

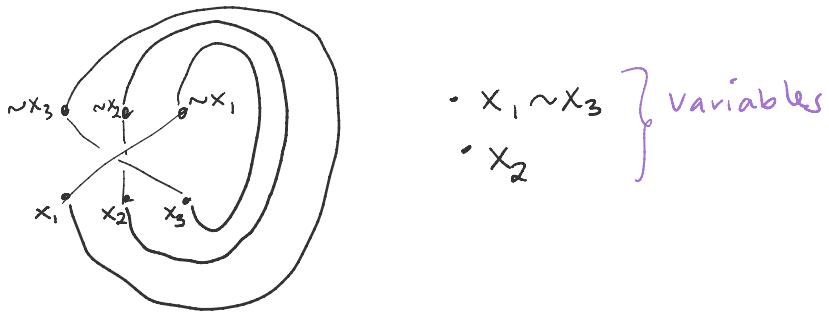
□

Cor: For any β , action of x_i is homotopic to $x_{w(i)}'$ where w = permutation for β .

If we close the braid



Thm: If $L = L_1 \cup \dots \cup L_r$ is a link w/r components then $HHH(L)$ is naturally a module over r variables (one for each components)



Last time:

$$T(2, k) \quad k > 0 \text{ odd}$$

HHH:

$$\frac{\mathbb{C}[x_1, x_2]}{x_1 - x_2} \quad 0 \quad \frac{\mathbb{C}[x_1, x_2]}{x_1 - x_2} \quad 0 \quad \dots \quad \frac{\mathbb{C}[x_1, x_2]}{x_1 - x_2}$$

$x_1 = x_2$ on homology (Knot w/ 1 component)

k even:

$$\text{extra } \mathbb{C}[x_1, x_2]$$

Fact: (Rasmussen)

If K is a knot then $HHH(K) = \mathbb{C}[x] \otimes \overline{HHH}(K)$

$\nexists \overline{HHH}$ is finite dim'l

↳ Reduced HHH

$$\text{Ex: } \overline{HHH}^{a=0}(T(2, 2k+1)) = H_*(\mathbb{C}P^k)$$

Thm: (Elias, Hogancamp, Mellit)

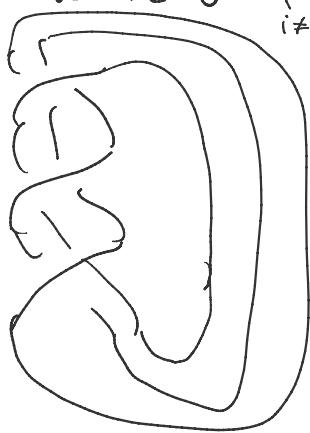
If L = positive torus link $T(m, n)$, then $HHH(T(m, n))$ is supported in even degrees

Thm: (Hogancamp, E. Gorsky)

$T(m,n)$ torus link n components, pairwise linked

$$HHH^{a=0}(T(n,n)) = J/\gamma J$$

where $J = \bigcap_{i \neq j} (x_i - x_j, y_i - y_j) \subset \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]$



bad drawing

ideals