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Next, we would like to give yet another interpretation of Hilb"((,0) using geometric representation
theory. Let us choose a projection of C' to some line, and let n be the degree of this projection. We will
regard the line as a local model for the “base curve” and C' as a “spectral curve”.

Remark 6.7. The choice of the projection naturally splits the unit sphere in C* as a union of two solid tori.
Indeed, the equation of the sphere is |z|? + |y|? = £% and the solid tori are |x|? < % and |y|? < % For & small
the intersection of C' with a sphere defines a closed n-strand braid which is contained in one of the tori. This is

known as a braid monodromy construction, see e. g. [2] and references therein.
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We will use the following results.

Lemma 6.8. Let C' be a germ of an arbitrary plane curve (possibly non-reduced) given by the equation { f(x,vy) =

0}.
(@) One can replace f(z, y) by a polynomial of some degree n in x with coefficients given by power series in y.

(b) A (topological) basis in Oc,o is given by monomials of the form z*y®, a < n — 1. In other words, Oc,o is a
free C[[y]|-module of rank n with basis 1,... 2" 1,

(c) The multiplication by x and y in this basis is given by the matrices:

y 00 -~ 0 000 —foly)
0y 0 - D 100 «+  —fi(y)
Yo l0 0y o of  x.]o1o0 —fa(y)
000 - y 00 0 - —fuuly)

In particular, the characteristic polynomial of the second matrix equals det(X — z - I) = f(x,y).
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Example 6.10. For the cusp C' = {2 = y*} we have Oy = C[[2]](1,y, y?) so that

0 0 a?
Y=1110 .
0 1

On the other hand, we can choose a different projection and write Oc,o = C[[y]]{1, z) so that

_{0
=0 %).

In both cases the characteristic polynomial equals (up to sign) = — y*.
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We will use Lemma 6.8 to give a description of Hilb™(C,0) when N 3 0 and O is irreducible, see also
Section 6.4 below. First, let us recall that for the group SL,, the affine Grassmannian is the ind-variety

Grsy,, == SLa(C((2)))/ S L (C[[]]).

The affine Grassmannian Grgy,,, has the following interpretation. A lattice V' C C((z))" = C*((x)) is a
free C[[]]-submodule of rank n such that V' @¢|iz)) C((z)) = C"((x)). Ipother words, a lattice I”_is the

z||-span of a C((x))-basis (vy,...,v,) of C" . Let us say that a lattice V" 1s 0 n-type if we can
find such a basis so that the determinant of the matrix with columns v, . .., v, is 1. It is known then that
the affine Grassmannian parametrizes such lattices,

Grsr, = {V € C*((a)) : V is a lattice of SL,-type} .

Remark 6.11. Of course, one can do a similar construction with GL,, instead of SL,,, and obtain that the affine
Grassmannian Grgy,, = GL,.(C((x)))/GL, (C|[z]]) parametrizes all lattices in C*((x)).
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Theorem 6.14 ([81, 86]). Otne has

é H*(Hilb*(C,0)) = grpH* (Spy) & Cla],
k=0

where grp refers to the associated graded with respect to a certain “perverse” filtration on the cohomology of Spy-.

Furthermore, there is an action of sl on H*(Spy-) satisfying “curious hard Lefshetz” property with respect to the
perverse filtration.
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Theorem 6.24 ([73)). (a) Onehas "] =\ K/\ y h,\) \/\, N4 { W
3
H. pn(Spy) = HHH®(T (n, kn)) X Cfa ey 22 1) (Hﬁ-“i -1

C[zl:"‘rzn]/{ni ri—1)

where the action of z; on the left hand side is given by the lattice Z™~', and on the right hand side by Theorem
5.10. Ledfire cefin

(b) Similarly, ([ Z A-

H pr(Spy) = BY (T ) itz [ -1)
C| i

Cl1,...,Tn X]_[% ri—1

~
where T = (C*)"~! and the equiv@rfant parameters y,,. .., y, with 3, y; = 0 match the ones appearing in the
y-ification on the right. One can avgid the restrictions to the codimension 1 subtori by considering the G L,,-affine
Springer fibers instead.
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