C=irreducible plane curve through (0,0), e.g.

Fact: We can always parametrize (Newton)

higher ovder terms

If
$$t=x^{y_n}$$
 $y(x)=x^{y_n}$

Fact: The affine Springer fiber corresponding to

$$C = Hilb^{\circ}(C) \quad for \quad N >> 0$$

$$= \begin{cases} V \subset \mathbb{C}(\{t\}) \\ \chi(t) \ V \subset V \end{cases}$$

-> proof (ask Josh Turner)

Ex: $x(t)=t^2$ $y(t)=t^3$ $y(t)=t^3$ $y(t)=t^3$ $y(t)=t^3$

If $\varphi(t) \in \mathbb{C}((t))$ w/ ord $\varphi(t) = Smalles + degree of monomial$ in q w/nonzero coeff.

Can assume minimal order of $\varphi(t) \in V$ is D

$$V = (1+\lambda t, t^2, t^3, \dots)$$
 $\lambda \in \mathbb{C}$

$$V = (1, t, t^2, ...)$$

Spr = CP' Where Y curvedescribing C

Q: Meaning of minimal order? V= (tk + 2tk+1, tk+2, ...)

So Spr has a cell decomposition

Cells $(\cong \mathbb{C}^{d}) \iff (m,n)$ invariant subsets

where a: -n-generators of \triangle

def: $\triangle \subset \mathbb{Z}$ is (m,n)-invariant if $\triangle + m \subset \triangle$, $\triangle + n \subset \triangle$ a; is an n-generator of \triangle if $a: \in \triangle$ $\exists a: -n \notin \triangle$

Remark: In any remainder mod n we have exactly 1-generator

Ex:
$$(m,n)=(2,3)$$

 $dim=1 \rightarrow 0,2,3,4,5,...$ 2,3 invariant 3-generators
 $dim=0 \rightarrow 0,1,2,3,4,5,...$ Subset 2-generators

If min $(\Delta) = 0$, there are exactly 2 invariant subsets

lemma: If $x(t) \lor c \lor$, $y(t) \lor c \lor$, define $\Delta_v = \{0rd \ \varphi(t) : \varphi(t) \in V\} \subset \mathbb{Z}$, then Δ_v , is (m,n) invariant

lemma: If $x(t) \ V \subset V$, $y(t) \ V \subset V$, define $\Delta_V = \{0rd \ \varphi(t) : \varphi(t) \in V \} \subset \mathbb{Z}$, then Δ_V is (m,n) invariant

Cor: (Thm) We can compute H*(Spr) & similarly, H*(Hilb*(c)) VK
(ORS)

Remark: (G, Mazin, Oblom Kov)

 $x=t^n$, $y=t^m+\lambda t^{m+1}+...$, $\lambda \neq 0$, where (m,n) not necessarily coprime link=certain specific cable of $(\frac{m}{d},\frac{n}{d})$ torus knot, $d=\gcd(m,n)$ e.g. (t^4,t^6+t^7)

In this case, we still have cell decomposition

cells = (m,n)-invariant subset & additional condition

dim = Same formula

Q: How to prove that H*(Sp*) is related to HHH?

· Hogancamp - Mellit: HHH can be computed using some recursion (Soyeon's talk)

Claim: H* (Spr) satisfies same recursion

Idea: $u \subseteq \{0,1\}^{m+n}$ binary sequence $\Delta \subset \mathbb{Z}_{\geq 0}$ $P_{u} = \sum_{\substack{0 \leq 1 \leq n \\ 0 \leq n \leq n+n-1 \leq 1}} q^{\lfloor \mathbb{Z}_{\geq 0} - \Delta \rfloor} + d_{im} \mathbb{I}_{x}$

Then P_u satisfies $P_{ov} = q(P_{vo} + P_v)$ $P_{iv} = t \cdot P_{v_i}$

proof: •If $0 \notin \Delta$, we can consider $\Delta - 1$. This changes $(\mathbb{Z}_{\geq 0} - \Delta)$ by I does not change dim. •If $0 \in \Delta$, can erase Δ is consider $(\Delta \setminus \{0\}) - 1$ of 1 does not change aim.

of $O \in \Delta$, can erase Δ is consider $(\Delta \setminus \{0\}) - 1$ $m \in \Delta$, $n \in \Delta$, $m + n \in \Delta$ Can say how dim changes

Ex: Ø_2345 dim=1 (# of spaces)
12345 dim=0