Last time:

Conditions:

1) "Open Bott-Samelson"
$$F(j) = F(j+1)$$

$$F_n \cup (j+1)$$

$$F_$$

where
$$\mathcal{F}^{(j)} \neq \mathcal{F}^{(j+1)}$$
 are in position Sij

$$\mathcal{F}_{k}^{(j)} = \mathcal{F}_{k}^{(j+1)}, \ \mathcal{F}_{ij}^{(j)} \neq \mathcal{F}_{ij}^{(j+1)}$$

where $k \neq i$;

$$\begin{array}{cccc}
C^3 & V & P & V & L & V & V \\
V & P & V & L & V & V & V & V
\end{array}$$

$$F^{(0)} = standard flag$$
 $F^{(k)} = w_0 F^{(0)}$ where $w_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Thm: (last time) This is smooth (or empty) $\dim - l(\omega) - {n \choose 2}$

Ex:
$$N=2$$

$$W = S_{i}^{3}$$

$$\begin{cases} L_{i} \neq L_{2} \neq L_{3} \neq L_{4} \end{cases} \subset P_{L_{2}}^{1} \times P_{L_{3}}^{1}$$

$$e_{i}^{1} = e_{i}^{2}$$

 \Rightarrow C

Case 2:
$$L_1 \neq L_3$$

· $L_3 \neq L_1, L_4 \Rightarrow \mathbb{CP}' - 2pts = \mathbb{C}^*$ choices for L_3
· Once L_3 chooses
 $L_2 \neq L_1, L_3 \Rightarrow \mathbb{CP}' - 2pts = \mathbb{C}^*$ choices for L_3
($\mathbb{C}^* \times \mathbb{C}^*$)

Conclusion:

$$X(\sigma^3)$$
 has a stratification $X(\sigma^3) = \mathbb{C} \sqcup (\mathbb{C}^*)^2$

Cor: # points over
$$F_q$$
 is $q + (q - 1)^2 = q^2 - q + 1$

Thm: a)
$$w = \cdots S_i S_{i+1} S_i \cdots$$

$$w' = \cdots S_{i+1} S_i S_{i+1} \cdots$$
Then $\chi(w) \simeq \chi(w')$ (last time)
$$w' = \cdots S_i S_i \cdots$$

$$w' = \cdots S_i \cdots$$

b)
$$W = ... S; S; ...$$
 $w' = ... S; ...$
 $w'' = ... S; ...$
 $\chi(w)$ has a stratification

 $\chi(w) \simeq \chi(w') \times \mathbb{C}^* \sqcup \chi(w'') \times \mathbb{C}$

proof:
$$\int_{-1}^{(1)} \frac{1}{s_i} \int_{-1}^{(2)} \frac{1}{s_i} \int_{-1}^{(3)} \frac{1}{s_i} \int_{-1}^{(3)}$$

Casel:
$$F^{(1)} = F^{(3)}$$

 $(P^1 - pt)$ choices for $F^{(2)}$

Case 2:
$$F^{(1)} \neq F^{(3)}$$

 $(P'-2pt) = C^*$ Choices for $F^{(2)}$

$$\#\chi(\omega) = \#\chi(\omega')(q-1) + \#\chi(\omega'') \cdot q$$

 \Rightarrow Can compute $\#\chi(\omega)$ recursively for any ω !

Thm: (Kalman)

$$X(w) = (a=0)$$
 term in $+ 10MFLY(w \cdot \Delta^{-1})$
where $\Delta = w_0$ positive negative braid braid

def:
$$B:(z) = \begin{cases} 1 & \text{nxn matrix} \\ z - 1 & \text{nxn matrix} \end{cases}$$

proof:
$$B_{i}(z_{1}) B_{iH}(z_{2}) B_{i}(z_{3}) = \begin{pmatrix} z_{1} & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & z_{2} & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} z_{3} & -1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} z_{1} & -z_{2} & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} z_{3} & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} z_{1}z_{3} - z_{2} & z_{1} & 1 \\ z_{3} & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
Then compute $B_{i+1}(z_{3}) B_{i}(z_{1}z_{3} - z_{2}) B_{i+1}(z_{1})$

w= Si, --. Sik >> Braid matrix Bi,(Zi) --- Bik(Zki)
invariant under braid moves up to change
of variables

Thm: $\chi(w) \simeq \{z, --- z_k : B_{i_1}(z_i) --- B_{i_k}(z_k) = w_0 U \}$ U is upper triangular $\Longrightarrow \{z_1 --- z_k : w_0^{-1} B_{i_1}(z_i) --- B_{i_k}(z_k) \text{ upper triangular} \}$

 $E_{X}: w = S_{1}^{3}$ $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -1 \\ 1 & 0 \end{pmatrix} upper triangular$ $= \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} &$

 $\chi(s^{3}) = \{z_{1,1}z_{2,1}z_{3} : z_{1}z_{2}z_{3} - z_{1} - z_{3} = 0\} \subset \mathcal{L}$ $\simeq \{z_{1}z_{2} - 1 \neq 0\} \subset \mathcal{L}$ $z_{1} = z_{3}(z_{1}z_{2} - 1)$ smooth

Case 1: $\frac{2}{2},\frac{2}{2}-1\neq 0$ $\frac{2}{2},\frac{2}{2}-1\neq 0$

Case 2: 2, 2, -1 = 02, = 0 contradiction! proof of theorem: Want to find bijection bothen flags

lemma: F, F' are in position s; if F'=FB:(2)

Unpack: Choose some basis compatible w/F

$$V_1, V_2, \dots, V_n$$

$$\mathcal{F} \sim \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

 $\underbrace{\ell \times :} \left(\begin{array}{cc} 1 & 1 \\ V_1 & V_2 \\ 1 & 1 \end{array} \right) = \left(\begin{array}{cc} 1 & 1 \\ 2V_1 + V_2 & -V_1 \\ 1 & 1 \end{array} \right)$

(any line transverse to span (v,) has unique generator of this form