Practice problems for the final exam

1. Prove the identity
\[1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \ldots + n(n+1)(n+2) = \frac{1}{4}n(n+1)(n+2)(n+3). \]

2. Find the number of 100-element subsets of \(\{1, \ldots, 2020\} \) containing at least one even integer.

3. Find the coefficient at \(x^2y^2z^3 \) in the expansion of \((x + y + z)^7 \).

4. In a tournament there are 32 teams. In the first round they are grouped into 16 pairs. How many ways are there to group them into pairs?

5. Prove that \(\binom{n}{k} - \binom{n}{k+1} + \binom{n}{k+2} = \binom{n-1}{k-1} + \binom{n-1}{k+2} \).

6. There are 20 identical coins. In how many ways one can distribute them between 6 people, such that each one gets at least one coin?

7. Recall that the integer part \(\lfloor x \rfloor \) of a real number \(x \) is the maximal integer that is less than or equal to \(x \). Given 500 real numbers in the interval \([0, 20]\), prove that there are at least 24 of them with the same integer part.

8. Are there two consecutive Fibonacci numbers \(F_n, F_{n+1} \) which are both divisible by 7? Find such numbers or prove that they do not exist.

9. A convex polyhedron \(P \) has \(v \) vertices, \(e \) edges and \(f \) faces. Consider the polyhedron \(P' \) obtained from \(P \) by truncating (cutting off) all vertices.
 (a) Prove that \(P' \) has \(2e \) vertices
 (b) Prove that \(P' \) has \(v + f \) faces
 (c) Prove that \(P' \) has \(3e \) edges.

10. Give an example of a planar graph where every vertex has degree 4.

11. Prove that there does not exist a planar graph where every vertex has degree 6.

12. A tree has 11 vertices.
 (a) What is the maximal possible number of leaves for this tree?
 (b) What is the minimal possible number of leaves for this tree?

13. A graph has 10 vertices and 40 edges.
 (a) Prove that there is a vertex of degree at least 8.
 (b) Prove that this graph is connected.
 (c) Prove that this graph is not planar.

14. Consider the complete graph on (a) 5 (b) 6 (c) 7 vertices. Is there an Eulerian walk in this graph? Describe this walk or prove that it does not exist.