MAT 145, Spring 2020
 Solutions to Homework 3

1. (20 points) How many anagrams can you make from the word COMBINATORICS ?

Solution: We have 13 letters, among them 2 C's, 2 O's, 1 M, 1 B, 2 I's, $1 \mathrm{~N}, 1 \mathrm{~A}, 1 \mathrm{~T}, 1 \mathrm{R}$ and 1 S . By multinomial formula we get

$$
\text { The number of anagrams }=\frac{13!}{2!2!1!1!2!1!1!1!1!1!}=\frac{13!}{8}
$$

2. (20 points) In how many ways can you distribute n pennies to r children if each child is supposed to get at least 2 ?

Solution: We first give each child two pennies, and need to distribute the remaining $n-2 r$ between r children. We use "stars and bars" method: there are $(n-2 r)$ stars and $(r-1)$ bars which distribute them in r groups. The total number of positions for stars and bars is $(n-2 r)+(r-1)=n-r-1$, and we need to choose $r-1$ positions for bars, so the final answer is

$$
\binom{n-r-1}{r-1}
$$

3. (20 points) Find the value of k for which $k\binom{99}{k}$ is the largest.

Solution 1: We have $k\binom{99}{k}=k \frac{99!}{k!(99-k)!}=99 \frac{98!}{(k-1)!(99-k)!}=99\binom{98}{k-1}$. It is the largest when $\binom{98}{k-1}$ is the largest which happens when $k-1=$ $98 / 2=49$, so $k=50$.

Solution 2: Let us compare the values of $k\binom{99}{k}$ and $(k-1)\binom{99}{k-1}$:

$$
\begin{gathered}
\frac{k\binom{99}{k}}{(k-1)\binom{99}{k-1}}=k \cdot \frac{99!}{k!(99-k)!} \cdot \frac{1}{k-1} \cdot \frac{(k-1)!\cdot(100-k)!}{99!}= \\
\frac{k \cdot 99!\cdot(k-1)!\cdot(99-k)!(100-k)}{k \cdot(k-1)!\cdot(99-k)!\cdot(k-1) 99!}=\frac{100-k}{k-1} .
\end{gathered}
$$

We have

$$
\frac{100-k}{k-1}>1 \Leftrightarrow 100-k>k-1 \Leftrightarrow 101>2 k \Leftrightarrow k \leq 50 .
$$

This means that the values $k\binom{99}{k}$ increase for $k \leq 50$ and decrease for $k>50$, so the largest value is at $k=50$.
4. (20 points) Find the coefficient at $x^{2} y z w^{7}$ in the expansion of

$$
(x+y+z+w)^{11} .
$$

Solution: By Multinomial Theorem the coefficient equals

$$
\frac{11!}{2!1!1!7!}=\frac{11 \cdot 10 \cdot 9 \cdot 8}{2}
$$

5. (20 points) Find the sum

$$
\binom{3}{3}+\binom{4}{3}+\ldots+\binom{n}{3}
$$

for all $n \geq 3$.
Solution: We prove by induction that

$$
\binom{3}{3}+\binom{4}{3}+\ldots+\binom{n}{3}=\binom{n+1}{4} .
$$

Base: For $n=3$ we get $\binom{3}{3}=1=\binom{4}{4}$.
Step: Suppose that $\binom{3}{3}+\binom{4}{3}+\ldots+\binom{n}{3}=\binom{n+1}{4}$. Then

$$
\binom{3}{3}+\binom{4}{3}+\ldots+\binom{n}{3}+\binom{n+1}{3}=\binom{n+1}{4}+\binom{n+1}{3}=\binom{n+2}{4} .
$$

