MAT 145, Spring 2020

Solutions to homework 4

1. (20 points) Prove the identity for all $n \geq k \geq m$:

$$
\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{k-m}
$$

Solution: We have

$$
\begin{aligned}
\binom{n}{k}\binom{k}{m} & =\frac{n!}{k!(n-k)!} \cdot \frac{k!}{m!(k-m)!}=\frac{n!}{(n-k)!m!(k-m)!} \\
\binom{n}{m}\binom{n-m}{k-m} & =\frac{n!}{m!(n-m)!} \cdot \frac{(n-m)!}{(k-m)!(n-k)!}=\frac{n!}{m!(k-m)!(n-k)!} .
\end{aligned}
$$

2. (20 points) Use the result of Problem 1 above to prove the identity for all $n \geq m$:

$$
\sum_{k=m}^{n}\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{m}{m}+\ldots+\binom{n}{n}\binom{n}{m}=\binom{n}{m} 2^{n-m}
$$

Solution: Using Problem 1 we can rewrite

$$
\begin{gathered}
\sum_{k=m}^{n}\binom{n}{k}\binom{k}{m}=\sum_{k=m}^{n}\binom{n}{m}\binom{n-m}{k-m}= \\
\binom{n}{m}\binom{n-m}{0}+\binom{n}{m}\binom{n-m}{1}+\ldots+\binom{n}{m}\binom{n-m}{n-m}= \\
\binom{n}{m}\left(\binom{n-m}{0}+\binom{n-m}{1}+\ldots+\binom{n-m}{n-m}\right)=\binom{n}{m} \cdot 2^{n-m} .
\end{gathered}
$$

3. (20 points) Prove that the Fibonacci number $F_{3 n}$ is even for all n.

Solution 1: Let us prove by induction that $F_{3 n}$ is even, $F_{3 n+1}$ is odd and $F_{3 n+2}$ is odd.

Base: We have $F_{0}=0, F_{1}=F_{2}=1$.
Step: Suppose that $F_{3 n}$ is even, $F_{3 n+1}$ is odd and $F_{3 n+2}$ is odd. Then $F_{3 n+3}=F_{3 n+1}+F_{3 n+2}$ is a sum of two odd numbers, so it is even. Similarly, $F_{3 n+4}=F_{3 n+3}+F_{3 n+2}$ is a sum of even and odd number, so it is odd, and $F_{3 n+5}=F_{3 n+3}+F_{3 n+4}$ is a sum of even and odd number, so it is odd.

Solution 2: Let us prove by induction that $F_{3 n}$ is even.
Base: $F_{3}=2$ is even
Step: Assume that $F_{3 n}$ is even. Then

$$
F_{3 n+3}=F_{3 n+2}+F_{3 n+1}=\left(F_{3 n}+F_{3 n+1}\right)+F_{3 n+1}=F_{3 n}+2 F_{3 n+1}
$$

Since $F_{3 n}$ is even, and $2 F_{3 n+1}$ is even, $F_{3 n+3}$ is even.
4. (20 points) Prove the identity for Fibonacci numbers:

$$
F_{1}+F_{3}+\ldots+F_{2 n-1}=F_{2 n}
$$

Solution: We prove it by induction in n.
Base: For $n=1$ we get $F_{1}=F_{2}=1$
Step: Assume that

$$
F_{1}+F_{3}+\ldots+F_{2 n-1}=F_{2 n}
$$

Then

$$
F_{1}+F_{3}+\ldots+F_{2 n-1}+F_{2 n+1}=F_{2 n}+F_{2 n+1}=F_{2 n+2}
$$

5. (20 points) In how many ways can you cover a $2 \times n$ chessboard with dominoes (2×1 rectangles)?

Solution 1: Let A_{n} be the number of ways to tile the board with dominoes. We prove by induction in n that $A_{n}={ }_{n+1}$.

Base: $A_{1}=1=F_{2}, A_{2}=2=F_{3}$.
Step: Suppose that we need to tile $2 \times(n+1)$ board. Then either there is a vertical domino on the right end, and there are A_{n} ways to tile the remaining $2 \times n$ rectangle, or there is a pair of horizontal dominoes on the right, and there are A_{n-1} ways to tile the remaining $2 \times(n-1)$ rectangle. Therefore

$$
A_{n+1}=A_{n}+A_{n-1}=F_{n+1}+F_{n}=F_{n+2} .
$$

Solution 2: Given a tiling, let us group its columns as following. A vertical domino is an "ordinary" column while a pair of horizontal dominoes is a "double column". If there are k "double" columns then there are $n-2 k$ "ordinary" ones and $n-k$ columns in total. We need to choose k "double "columns out of these $n-k$, so the number of tilings with k "double" columns equals $\binom{n-k}{k}$. The total number of tilings equals $\sum_{k}\binom{n-k}{k}=F_{n+1}$, as we proved in class.

