MAT 145, Spring 2020

Solutions to homework 5
Problems 1-3 are about Lucas numbers defined by

$$
L_{1}=1, L_{2}=3 \text { and } L_{n+1}=L_{n}+L_{n-1}
$$

1. (20 points) Prove that $L_{n}=2 F_{n+1}-F_{n}$.

Solution: We prove it by induction in n.
Base: For $n=1$ we get $2 F_{2}-F_{1}=2 \cdot 1-1=1=L_{1}$ and for $n=2$ we get $2 F_{3}-F_{2}=2 \cdot 2-1=3=L_{2}$.

Step: Suppose that $L_{n}=2 F_{n+1}-F_{n}$ and $L_{n-1}=2 F_{n}-F_{n-1}$. Then

$$
\begin{gathered}
L_{n+1}=L_{n}+L_{n-1}=2 F_{n+1}-F_{n}+2 F_{n}-F_{n-1}= \\
2\left(F_{n+1}+F_{n}\right)-\left(F_{n}+F_{n-1}\right)=2 F_{n+2}-F_{n+1}
\end{gathered}
$$

2. (20 points) Prove that

$$
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Solution 1: We use the result of previous problem and the formula for Fibonacci numbers

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\varphi^{n}-\bar{\varphi}^{n}\right), \varphi=\frac{1+\sqrt{5}}{2}, \bar{\varphi}=\frac{1-\sqrt{5}}{2} .
$$

Then by Problem 1 we have

$$
\begin{gathered}
L_{n}=2 F_{n+1}-F_{n}=\frac{1}{\sqrt{5}}\left(2 \varphi^{n+1}-2 \bar{\varphi}^{n}-\varphi^{n}+\bar{\varphi}^{n}\right)= \\
\frac{1}{\sqrt{5}}\left((2 \varphi-1) \varphi^{n}-(2 \bar{\varphi}-1) \bar{\varphi}^{n}\right)=\frac{1}{\sqrt{5}}\left(\sqrt{5} \varphi^{n}+\sqrt{5} \bar{\varphi}^{n}\right)=\varphi^{n}+\bar{\varphi}^{n}
\end{gathered}
$$

Here we used that $2 \varphi-1=\sqrt{5}$ and $2 \bar{\varphi}-1=-\sqrt{5}$.
Solution 2: We prove it by induction in n.
Base: For $n=1$ we get $\varphi+\bar{\varphi}=1=L_{1}$, and for $n=2$ we get

$$
\varphi^{2}+\bar{\varphi}^{2}=\frac{1+2 \sqrt{5}+5}{4}+\frac{1-2 \sqrt{5}+5}{4}=\frac{1+5+1+5}{4}=3=L_{2} .
$$

Step: Suppose that $L_{n}=\varphi^{n}+\bar{\varphi}^{n}$ and $L_{n-1}=\varphi^{n-1}+\bar{\varphi}^{n-1}$. Then

$$
\begin{gathered}
L_{n+1}=L_{n}+L_{n-1}=\varphi^{n}+\bar{\varphi}^{n}+\varphi^{n-1}+\bar{\varphi}^{n-1}= \\
(\varphi+1) \varphi^{n-1}+(\bar{\varphi}+1) \bar{\varphi}^{n-1}=\varphi^{n+1}+\bar{\varphi}^{n+1}
\end{gathered}
$$

Here we used that $\varphi+1=\varphi^{2}$ and $\bar{\varphi}+1=\bar{\varphi}^{2}$.
3. (20 points) A round flower bed has $n \geq 2$ slots numbered from 1 to n. Prove that there are L_{n} ways to plant tulips and lilies in such a way
that there are no two lilies planted next to each other (but two tulips can be planted next to each other).

Solution: Let us label the slots from 1 to n such that 1 is next to n. We abbreviate tulips by T and lilies by L .

If we place T at slot 1 then we can fill the slots $2, \ldots, n$ by an arbitrary sequence of L's and T's without LL. The number of such sequences equals $F_{(n-1)+2}=F_{n+1}$.

If we place L at slot 1 then both slots 2 and n should contain T , and we can fill the slots $3, \ldots, n-1$ by an arbitrary sequence of L's and T's without LL. The number of such sequences equals $F_{(n-3)+2}=F_{n-1}$.

In total, we get

$$
F_{n+1}+F_{n-1}=F_{n+1}+F_{n+1}-F_{n}=2 F_{n+1}-F_{n}=L_{n}
$$

options.
4. (20 points) Prove the identity $F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b}$.

Solution 1: We fix a and prove it by induction in b.
Base: For $b=0$ we get $F_{a+1} F_{1}+F_{a} F_{0}=F_{a+1} \cdot 1+F_{a} \cdot 0=F_{a+1}$. For $b=1$ we get $F_{a+1} F_{2}+F_{a} F_{1}=F_{a+1} \cdot 1+F_{a} \cdot 1=F_{a+2}$.

Step: Assume that the identity holds for b and ($b-1$, that is,

$$
F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b}, F_{a+b}=F_{a+1} F_{b}+F_{a} F_{b-1}
$$

Then

$$
\begin{gathered}
F_{a+b+2}=F_{a+b+1}+F_{a+b}=F_{a+1} F_{b+1}+F_{a} F_{b}+F_{a+1} F_{b}+F_{a} F_{b-1}= \\
F_{a+1}\left(F_{b+1}+F_{b}\right)+F_{a}\left(F_{b}+F_{b-1}\right)=F_{a+1} F_{b+2}+F_{a} F_{b+1} .
\end{gathered}
$$

Solution 2: We know that F_{a+b+1} is the number of binary sequences of length $a+b+1-2=(a-1)+1+(b-1)$ without 11 . Given such a sequence, we can look at its a th position.

If we have 0 at a-th position, then to the left and right of it there are two sequences of length $(a-1)$ and $(b-1)$ without 11, and the number of such sequences equals $F_{(a-1)+2} F_{(b-1)+2}=F_{a+1} F_{b+1}$.

If we have 1 at a th position, then it must be surrounded by 0 at either side, and we are left with two sequences of length $(a-2)$ and $(b-2)$ without 11, the number of such sequences equals $F_{(a-2)+2} F_{(b-2)+2}=$ $F_{a} F_{b}$.

In total, we get $F_{a+b+1}=F_{a+1} F_{b+1}+F_{a} F_{b}$.
5. (20 points) Draw all graphs with 2,3 and 4 vertices.

