MAT 146, Spring 2019
 Practice problems for Midterm 1

Note that this practice sheet contains more problems than the actual midterm

1. Find the formula for the coefficients a_{n} of the series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ where
(a) $A(z)=\frac{1}{1+z}$
(b) $A(z)=\frac{1}{(1-3 z)^{2}}$
(c) $A(z)=\frac{2+z}{(1-2 z)(1-3 z)}$
2. Find the generating functions for the following sequences:
(a) $a_{n}=3 n+(-1)^{n}$
(b) $a_{n}=7 \cdot 5^{n}-5 \cdot 7^{n}$
(c) $a_{n}=n^{2}+n+1$
3. Given the following recurrences for a_{n}, compute the generating functions:
(a) $a_{n+1}=3 a_{n}+1, a_{0}=0$
(b) $a_{n+1}=a_{n}+5^{n}, a_{0}=0$
4. Use generating functions to solve the following recurrences:
(a) $a_{n+2}=2 a_{n+1}-a_{n}, a_{0}=1, a_{1}=3$.
(b) $a_{n+1}=2 a_{n}+5^{n}, a_{0}=0$.
5^{*}. Consider all sequences $\left(a_{1}, \ldots, a_{n}\right)$ such that a_{i} are nonnegative integers and $a_{i}+a_{i+1} \leq 2$. Let P_{n}, Q_{n} and R_{n} be the number of such sequences which start from 0,1 and 2 respectively.
(a) Compute P_{n}, Q_{n}, R_{n} by writing down all such sequences for $n=1,2,3$.
(b) Prove that P_{n}, Q_{n}, R_{n} satisfy the recurrence relations:

$$
\begin{array}{r}
P_{n}=P_{n-1}+Q_{n-1}+R_{n-1} \\
Q_{n}=P_{n-1}+Q_{n-1} \\
R_{n}=Q_{n-1} .
\end{array}
$$

(c) Translate the above equations into linear equations for the generating functions for P_{n}, Q_{n}, R_{n}.
(d) Solve these equations and compute the generating functions for P_{n}, Q_{n}, R_{n}.

