MAT 146, Spring 2019
 Practice problems for the final exam

Note that this practice sheet contains more problems than the actual midterm

1. Let b_{n} be the number of ways to change n cents using coins valued 4 and 6 cents. Find the generating function $\sum b_{n} x^{n}$. For which n we can actually change n cents this way (that is, $b_{n}>0$)?
2. A permutation f has order 3 if for all x one has $f(f(f(x)))=x$ and f is not the identity permutation. Find the exponential generating function for the number of permutations of order 3 .
3. The generating function for the sequence a_{n} equals $\sum a_{n} x^{n}=A(x)$. Find the generating function for the sequence $b_{n}=5 a_{n+1}+a_{n-1}-3$.
4. Consider the series

$$
A(x)=\sum a_{n} x^{n}=\frac{(1+x)(1+2 x)}{(1-2 x)\left(1+x^{2}\right)}
$$

(a) Find the poles of $A(x)$ and principal parts at these poles.
(b) Find the radius of convergence for $A(x)$.
(c) Use (b) to estimate the coefficients a_{n}.
(d) Use (a) to find the partial fraction decomposition of $A(x)$
(e) Find the closed formula for a_{n}.
5. The sequence a_{n} satisfies the recurrence relation $a_{n}=a_{n-1}+2 a_{n-2}, a_{0}=$ $a_{1}=1$. Find the generating function $\sum a_{n} x^{n}$.
6. The exponential generating function $A(x)=\sum \frac{a_{n}}{n!} x^{n}$ satisfies the differential equation

$$
A^{\prime}(x)+A(x)=e^{x}, \quad A(0)=0 .
$$

(a) Find the closed formula for the coefficients a_{n}.
(b) Find the closed formula for the series $A(x)$.
7. Find the closed formula for the coefficients of the series:
(a) $A(x)=\frac{1+x}{(1+2 x)(1+3 x)}$.
(b) $A(x)=\frac{1+x}{(1-x)^{3}}$.
8. Find the generating function for the number of partitions without parts equal to 3 or 5 .
9. Use the exponential formula to find the number of set partitions without blocks of size 3 or 5 .

10*. The Bessel function $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ satisfies the differential equation

$$
x A^{\prime \prime}(x)+A^{\prime}(x)+x A(x)=0
$$

Find a closed formula for its coefficients.

