MAT 146, Spring 2019
 Homework Assignment 7

Due before the start of the class on Wednesday, June 5

Section 2.7: 11. Find the radius of convergence of the following series:
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$; (c) $1+5 x^{2}+25 x^{4}+125 x^{6}+\ldots$

A: (a) Find the coefficients of the power series

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{1-x}{(1-2 x)(1+3 x)}
$$

(b) Find the radius of convergence of this series.

B: The sequence $\left\{a_{n}\right\}$ satisfies the recurrence relation

$$
15 a_{n}-5 a_{n-1}+3 a_{n-2}-a_{n-3}=0
$$

with some initial conditions a_{0}, a_{1}, a_{2}.
(a) Find the radius of convergence of the series $\sum a_{n} x^{n}$.
(b) Estimate a_{n} without solving the recurrence.

C: Recall that the exponential generating function for the number of derangements equals

$$
D(x)=\sum \frac{D_{n}}{n!} x^{n}=\frac{e^{-x}}{1-x}
$$

(a) Find all poles of $D(x)$ and principal parts at these poles.
(b) Use "pole removal" procedure to estimate D_{n}.

