MAT 146, Spring 2019
 Solutions to homework 2

A. (25 points) (a) Find a closed formula for the generating function $\sum_{k=0}^{\infty} k^{3} z^{k}$. (b) Use the result of (a) to find a closed formula for the sum of cubes:

$$
P_{3}(N)=1^{3}+\ldots+N^{3}
$$

Solution: (a) (15 points) We have

$$
\begin{gathered}
\frac{1}{(1-z)^{4}}=\sum_{k=0}^{\infty} \frac{1}{6}(k+3)(k+2)(k+1) z^{k} \\
\frac{1}{(1-z)^{3}}=\sum_{k=0}^{\infty} \frac{1}{2}(k+2)(k+1) z^{k} \\
\frac{1}{(1-z)^{2}}=\sum_{k=0}^{\infty}(k+1) z^{k} \\
\frac{1}{(1-z)}=\sum_{k=0}^{\infty} z^{k} .
\end{gathered}
$$

Since

$$
(k+3)(k+2)(k+1)=k^{3}+6 k^{2}+11 k+6, \quad(k+2)(k+1)=k^{2}+3 k+2,
$$

we have

$$
\begin{aligned}
& k^{3}=\left(k^{3}+6 k^{2}+11 k+6\right)-6\left(k^{2}+3 k+2\right)+7(k+1)-1= \\
& 6 \frac{1}{6}(k+3)(k+2)(k+1)-12 \frac{1}{2}(k+2)(k+1)+7(k+1)-1,
\end{aligned}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty} k^{3} z^{k}=\frac{6}{(1-z)^{4}}-\frac{12}{(1-z)^{3}}+\frac{7}{(1-z)^{2}}-\frac{1}{(1-z)} \tag{1}
\end{equation*}
$$

One can simplify it using common denominator:

$$
\sum_{k=0}^{\infty} k^{3} z^{k}=\frac{6-12(1-z)+7(1-z)^{2}-(1-z)^{3}}{(1-z)^{4}}=\frac{z^{3}+4 z^{2}+z}{(1-z)^{4}}
$$

(b) (10 points) The sum $P_{3}(N)=1^{3}+\ldots+N^{3}$ is the coefficient at z^{N} in the series

$$
\left(\sum_{k=0}^{\infty} k^{3} z^{k}\right)\left(\sum_{k=0}^{\infty} z^{k}\right)=\frac{1}{(1-z)}\left(\sum_{k=0}^{\infty} k^{3} z^{k}\right)=
$$

(by (1))

$$
=\frac{6}{(1-z)^{5}}-\frac{12}{(1-z)^{4}}+\frac{7}{(1-z)^{3}}-\frac{1}{(1-z)^{2}}
$$

Therefore

$$
\begin{gathered}
P_{3}(N)=6 \cdot \frac{1}{24}(N+4)(N+3)(N+2)(N+1)-12 \cdot \frac{1}{6}(N+3)(N+2)(N+1)+ \\
7 \frac{1}{2}(N+2)(N+1)-(N+1)= \\
\frac{N+1}{4}((N+4)(N+3)(N+2)-8(N+3)(N+2)+14(N+2)-4)= \\
\frac{N+1}{4}\left(N^{3}+9 N^{2}+26 N+24-8 N^{2}-40 N-48+14 N+28-4\right)= \\
\frac{N+1}{4}\left(N^{3}+N^{2}\right)=\frac{1}{4} N^{2}(N+1)^{2} .
\end{gathered}
$$

See also more combinatorial proofs of this fact at:
https://en.wikipedia.org/wiki/Squared_triangular_number
Section 1.7: 11. (25 points) Let $f(n)$ be the number of subsets of $\{1, \ldots, n\}$ that contain no consecutive numbers. Find the recurrence that is satisfied by $f(n)$ and then "find" the numbers themselves.

Solution: Let A be a subset of $\{1, \ldots, n\}$ with no consecutive numbers. If A does not contain n, then A is a subset of $\{1, \ldots, n-1\}$ and there are $f(n-1)$ choices for it. If A contains n then it cannot contain $n-1$, and the rest of A is an arbitrary subset of $\{1, \ldots, n-2\}$ with no consecutive integers, there are $n-2$ choices for it. Therefore

$$
f(n)=f(n-1)+f(n-2) .
$$

If $n=1$ we get two such subsets \emptyset and $\{1\}$, if $n=2$ there are 3 such subsets \emptyset, $\{1\},\{2\}$. Therefore $f(1)=2$ and $f(2)=3$. Recall that Fibonacci numbers F_{n} are given by the same recursion $F_{n}=F_{n-1}+F_{n-2}$, but $F_{0}=F_{1}=1, F_{2}=$ $2, F_{3}=3$. Therefore $f(n)=F_{n+1}$.
12. (25 points) Let $f(n, k)$ be the number of k-element subsets of $\{1, \ldots, n\}$ that contain no consecutive numbers. Find the recurrence for $f(n, k)$, solve it and find the formula for $f(n, k)$. Show the numerical valued of $f(n, k)$ in a Pascal triangle arrangement for $n \leq 6$.

Solution: Similarly to the previous problem we get a recursion

$$
f(n, k)=f(n-1, k)+f(n-2, k-1) .
$$

To solve it, it is useful to plot $f(n, k)$ for small n and k in a table

n	$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$
1	1	1	0	0
2	1	2	0	0
3	1	3	1	0
4	1	4	3	0
5	1	5	6	1

This table is very similar to the Pascal triangle containg binomial coefficients:

So one can guess

$$
f(n, k)=\binom{n-k+1}{k}
$$

Let us prove this equation by induction in n. If $n=1$ we get

$$
f(1,0)=1=\binom{1-0+1}{0}, f(1,1)=1=\binom{1-1+1}{1} .
$$

If $n=2$ we get
$f(2,0)=1=\binom{2-0+1}{0}, f(2,1)=2=\binom{2-1+1}{1}, f(2,2)=0=\binom{2-2+1}{2}$.
Now for $n>2$ we get
$f(n-1, k)+f(n-2, k-1)=\binom{n-1-k+1}{k}+\binom{n-2-(k-1)+1}{k-1}=$

$$
\binom{n-k}{k}+\binom{n-k}{k-1}=\binom{n-k+1}{k}
$$

13. (25 points) By comparing the results of the above two exercises, deduce an identity. Draw a picture of the elements of Pascal triangle that are involved in this identity.

Solution: We have $f(n)=\sum_{k=0}^{n} f(n, k)$, so

$$
f(n)=F_{n+1}=\sum_{k}\binom{n-k+1}{k}
$$

We can change $n+1$ to n and get

$$
F_{n}=\sum_{k}\binom{n-k}{k} .
$$

