
MAT 146, Spring 2019
Solutions to homework 2

A. (25 points) (a) Find a closed formula for the generating function
∑∞

k=0 k
3zk.

(b) Use the result of (a) to find a closed formula for the sum of cubes:

P3(N) = 13 + . . . + N3.

Solution: (a) (15 points) We have

1

(1− z)4
=
∞∑
k=0

1

6
(k + 3)(k + 2)(k + 1)zk,

1

(1− z)3
=
∞∑
k=0

1

2
(k + 2)(k + 1)zk,

1

(1− z)2
=
∞∑
k=0

(k + 1)zk,

1

(1− z)
=
∞∑
k=0

zk.

Since

(k + 3)(k + 2)(k + 1) = k3 + 6k2 + 11k + 6, (k + 2)(k + 1) = k2 + 3k + 2,

we have

k3 = (k3 + 6k2 + 11k + 6)− 6(k2 + 3k + 2) + 7(k + 1)− 1 =

6
1

6
(k + 3)(k + 2)(k + 1)− 12

1

2
(k + 2)(k + 1) + 7(k + 1)− 1,

and
∞∑
k=0

k3zk =
6

(1− z)4
− 12

(1− z)3
+

7

(1− z)2
− 1

(1− z)
. (1)

One can simplify it using common denominator:

∞∑
k=0

k3zk =
6− 12(1− z) + 7(1− z)2 − (1− z)3

(1− z)4
=

z3 + 4z2 + z

(1− z)4
.
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(b) (10 points) The sum P3(N) = 13 + . . .+N3 is the coefficient at zN in
the series (

∞∑
k=0

k3zk

)(
∞∑
k=0

zk

)
=

1

(1− z)

(
∞∑
k=0

k3zk

)
=

(by (1))

=
6

(1− z)5
− 12

(1− z)4
+

7

(1− z)3
− 1

(1− z)2
.

Therefore

P3(N) = 6 · 1

24
(N + 4)(N + 3)(N + 2)(N + 1)−12 · 1

6
(N + 3)(N + 2)(N + 1)+

7
1

2
(N + 2)(N + 1)− (N + 1) =

N + 1

4
((N + 4)(N + 3)(N + 2)− 8(N + 3)(N + 2) + 14(N + 2)− 4) =

N + 1

4

(
N3 + 9N2 + 26N + 24− 8N2 − 40N − 48 + 14N + 28− 4

)
=

N + 1

4
(N3 + N2) =

1

4
N2(N + 1)2.

See also more combinatorial proofs of this fact at:
https://en.wikipedia.org/wiki/Squared_triangular_number

Section 1.7: 11. (25 points) Let f(n) be the number of subsets of {1, . . . , n}
that contain no consecutive numbers. Find the recurrence that is satisfied
by f(n) and then “find” the numbers themselves.

Solution: Let A be a subset of {1, . . . , n} with no consecutive numbers.
If A does not contain n, then A is a subset of {1, . . . , n − 1} and there are
f(n− 1) choices for it. If A contains n then it cannot contain n− 1, and the
rest of A is an arbitrary subset of {1, . . . , n−2} with no consecutive integers,
there are n− 2 choices for it. Therefore

f(n) = f(n− 1) + f(n− 2).

If n = 1 we get two such subsets ∅ and {1}, if n = 2 there are 3 such subsets ∅,
{1}, {2}. Therefore f(1) = 2 and f(2) = 3. Recall that Fibonacci numbers
Fn are given by the same recursion Fn = Fn−1 +Fn−2, but F0 = F1 = 1, F2 =
2, F3 = 3. Therefore f(n) = Fn+1.
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12. (25 points) Let f(n, k) be the number of k-element subsets of {1, . . . , n}
that contain no consecutive numbers. Find the recurrence for f(n, k), solve
it and find the formula for f(n, k). Show the numerical valued of f(n, k) in
a Pascal triangle arrangement for n ≤ 6.

Solution: Similarly to the previous problem we get a recursion

f(n, k) = f(n− 1, k) + f(n− 2, k − 1).

To solve it, it is useful to plot f(n, k) for small n and k in a table

n k=0 k=1 k=2 k=3
1 1 1 0 0
2 1 2 0 0
3 1 3 1 0
4 1 4 3 0
5 1 5 6 1

This table is very similar to the Pascal triangle containg binomial coefficients:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

So one can guess

f(n, k) =

(
n− k + 1

k

)
.

Let us prove this equation by induction in n. If n = 1 we get

f(1, 0) = 1 =

(
1− 0 + 1

0

)
, f(1, 1) = 1 =

(
1− 1 + 1

1

)
.

If n = 2 we get

f(2, 0) = 1 =

(
2− 0 + 1

0

)
, f(2, 1) = 2 =

(
2− 1 + 1

1

)
, f(2, 2) = 0 =

(
2− 2 + 1

2

)
.

Now for n > 2 we get

f(n− 1, k) + f(n− 2, k − 1) =

(
n− 1− k + 1

k

)
+

(
n− 2− (k − 1) + 1

k − 1

)
=
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(
n− k

k

)
+

(
n− k

k − 1

)
=

(
n− k + 1

k

)
.

13. (25 points) By comparing the results of the above two exercises, de-
duce an identity. Draw a picture of the elements of Pascal triangle that are
involved in this identity.

Solution: We have f(n) =
∑n

k=0 f(n, k), so

f(n) = Fn+1 =
∑
k

(
n− k + 1

k

)
.

We can change n + 1 to n and get

Fn =
∑
k

(
n− k

k

)
.
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