MAT 146, Spring 2019

Solutions to homework 3
A. (a) (20 points) Use Taylor formula to find the coefficients in the series $A(x)=\sqrt{1-x}$.

Solution: We have $A(x)=(1-x)^{1 / 2}$, so $A^{\prime}(x)=-\frac{1}{2}(1-x)^{-1 / 2}, A^{\prime \prime}(x)=$ $-\frac{1}{2} \cdot \frac{1}{2}(1-x)^{-3 / 2}, A^{\prime \prime \prime}(x)=-\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2}(1-x)^{-5 / 2}$, and in general for $n \geq 2$

$$
\begin{gathered}
A^{(n)}(x)=-\frac{1 \cdot 3 \cdots(2 n-3)}{2^{n}}(1-x)^{-(2 n-1) / 2} \\
A^{(n)}(0)=-\frac{1 \cdot 3 \cdots(2 n-3)}{2^{n}}=-\frac{(2 n-2)!}{2^{n} \cdot 2^{n-1}(n-1)!}
\end{gathered}
$$

Note that for $n=1$ we have $(2 n-2)!=(n-1)!=1$, and the formula for $A^{(n)}(0)$ holds for $n=1$. Therefore by Taylor formula

$$
A(x)=1-\sum_{n=1}^{\infty} \frac{(2 n-2)!}{2^{2 n-1}(n-1)!n!} x^{n}
$$

(b) (20 points) We proved in class that the generating function for Catalan numbers has the form:

$$
C(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Use the result of part (a) to get an explicit formula for c_{n}.
Solution: From part (a) we get

$$
\sqrt{1-4 x}=1-\sum_{n=1}^{\infty} \frac{(2 n-2)!}{2^{2 n-1}(n-1)!n!}(4 x)^{n}=1-\sum_{n=1}^{\infty} \frac{(2 n-2)!\cdot 2}{(n-1)!n!} x^{n}
$$

Now

$$
C(x)=\frac{1-\sqrt{1-4 x}}{2 x}=\sum_{n=1}^{\infty} \frac{(2 n-2)!\cdot 2}{(n-1)!n!} \frac{x^{n}}{2 x}=\sum_{n=1}^{\infty} \frac{(2 n-2)!}{(n-1)!n!} x^{n-1}=\sum_{n=0}^{\infty} \frac{(2 n)!}{n!(n+1)!} x^{n}
$$

and

$$
c_{n}=\frac{(2 n)!}{n!(n+1)!}=\frac{1}{n+1}\binom{2 n}{n}
$$

B. (a) (20 points) Find the generation function $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$.

Solution: Let $A(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$, then

$$
A^{\prime}(x)=\sum_{n=1}^{\infty} x^{n-1}=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

and $A(x)=\int \frac{d x}{1-x}=-\ln (1-x)+C$. At $x=0$ we get $A(0)=0$, so $C=0$ and $A(x)=-\ln (1-x)$.
(b) (20 points) The harmonic numbers H_{n} are defined as

$$
H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}
$$

Find the generating function $\sum H_{n} x^{n}$.
Solution: We have

$$
\sum H_{n} x^{n}=\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n}\right)\left(\sum_{n=0}^{\infty} x^{n}\right)=-\ln (1-x) \cdot \frac{1}{1-x} .
$$

C. (20 points) Use generating functions to prove the identity

$$
F_{0}+\ldots+F_{n}=F_{n+2}-1
$$

where F_{k} are Fibonacci numbers.
Solution: Let $F(x)=\sum_{n} F_{n} x^{n}$ be the generating function for Fibonacci numbers. We proved in class that $F(x)=\frac{1}{1-x-x^{2}}$. Now the generating function for $F_{0}+\ldots+F_{n}$ equals

$$
F(x) \cdot \frac{1}{1-x}=\frac{1}{\left(1-x-x^{2}\right)(1-x)}
$$

while the generating function for $F_{n+2}-1$ equals

$$
\begin{gathered}
\frac{F(x)-F_{0}-F_{1} x}{x^{2}}-\frac{1}{1-x}=\frac{\frac{1}{1-x-x^{2}}-1-x}{x^{2}}-\frac{1}{1-x}= \\
\frac{1-1-x+x+x^{2}+x^{2}+x^{3}}{\left(1-x-x^{2}\right) x^{2}}-\frac{1}{1-x}=\frac{2+x}{1-x-x^{2}}-\frac{1}{1-x}= \\
\frac{2+x-2 x-x^{2}-1+x+x^{2}}{\left(1-x-x^{2}\right)(1-x)}=\frac{1}{\left(1-x-x^{2}\right)(1-x)} .
\end{gathered}
$$

Since the generating functions agree, we have

$$
F_{0}+\ldots+F_{n}=F_{n+2}-1
$$

