MAT 146, Spring 2019
Solutions to homework 3

A. (a) (20 points) Use Taylor formula to find the coefficients in the series
A(z) =1 — .

Solution: We have A(z) = (1—2)"/2,s0 A'(z) = —1(1—2)71/2 A"(z) =

—1 i1 —a) A (z) = -1 -1 2(1—2)7"2 and in general for n > 2
A(n)(x) _ _1 3-- 2(7?77/ - 3) (1 . $)—(2n—1)/27
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Note that for n = 1 we have (2n — 2)! = (n — 1)! = 1, and the formula for
A™(0) holds for n = 1. Therefore by Taylor formula
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(b) (20 points) We proved in class that the generating function for Catalan
numbers has the form:

C(x) =
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Use the result of part (a) to get an explicit formula for ¢,,.
Solution: From part (a) we get
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B. (a) (20 points) Find the generation function ) - -
Solution: Let A(z) =" %= then

n=1
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and A(z) = [& = —In(1 —2) + C. At z = 0 we get A(0) =0,s50C =0
and A(z) = —In(1 — ).

(b) (20 points) The harmonic numbers H,, are defined as

1 1
Hy=1+-+...+—.
2 n

Find the generating function » | H,z".
Solution: We have
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C. (20 points) Use generating functions to prove the identity
F+...+F,=F,,—1
where F), are Fibonacci numbers.

Solution: Let F'(z) =) F,x" be the generating function for Fibonacci
numbers. We proved in class that F(r) = —2

12 Now the generating
function for Fy + ... + F, equals
1 1
F(x) - =
(@) l—2 (I—z—-2%)(1-2)

while the generating function for Fj,,o — 1 equals

F(z)— Fy— Fiz 1 e l-u 1
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Since the generating functions agree, we have
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