MAT 146, Spring 2019
 Solutions to homework 4

Section 1.7: 4. (30 points) Let $f(x)$ be the exponential generating function of a sequence $\left\{a_{n}\right\}$. Find the exponential generating functions for the following sequences in terms of $f(x)$: (a) (5 points) $\left\{a_{n}+c\right\}$; (b) (5 points) $\left\{\alpha a_{n}+c\right\}$ (c) (5 points) $\left\{n a_{n}\right\}$; (e) (5 points) $0, a_{1}, a_{2}, a_{3}, \ldots$; (g) (5 points) $a_{0}, 0, a_{2}, 0, a_{4}, 0, \ldots ;$ (h) (5 points) $a_{1}, a_{2}, a_{3}, \ldots$

Solution: (a) $\sum \frac{a_{n}+c}{n!} x^{n}=f(x)+c e^{x}$; (b) $\sum \frac{\alpha a_{n}+c}{n!} x^{n}=\alpha f(x)+c e^{x}$. (c) $\sum \frac{n a_{n}}{n!} x^{n}=x f^{\prime}(x)$ (d) $f(x)-a_{0}$ (g) $\frac{1}{2}(f(x)+f(-x))$ (h) $f^{\prime}(x)$.
8. (a) (20 points) A sequence $\left\{a_{n}\right\}$ satisfies the recurrence relation $a_{n+1}=$ $3 a_{n}+2, a_{0}=0$. Find the exponential generating function $\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}$.

Solution 1: Let $\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}=A(x)$, then $\sum \frac{a_{n+1} x^{n}}{n!}=A^{\prime}(x)$. We get a differential equation $A^{\prime}(x)=3 A(x)+2 e^{x}$. Observe that $A(x)=-e^{x}$ satisfies this equation, so the general solution has the form

$$
A(x)=-e^{x}+C e^{3 x}
$$

Since $a_{0}=A(0)=0$, we have $-1+C=0, C=1$ and $A(x)=-e^{x}+e^{3 x}$.
Solution 2: We can solve the recurrence using usual generating functions first. Let $B(x)=\sum a_{n} x^{n}$, then $\sum a_{n+1} x^{n}=\left(B(x)-a_{0}\right) / x=B(x) / x$. We have

$$
B(x) / x=3 B(x)+\frac{2}{1-x}, B(x)=3 x B(x)+\frac{2 x}{1-x}, B(x)(1-3 x)=\frac{2 x}{1-x}
$$

and

$$
B(x)=\frac{2 x}{(1-x)(1-3 x)}=\frac{1}{1-3 x}-\frac{1}{1-x}=\sum_{n}\left(3^{n}-1\right) x^{n}
$$

Therefore $a_{n}=3^{n}-1$ and

$$
A(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}=\sum_{n} \frac{\left(3^{n}-1\right) x^{n}}{n!}=e^{3 x}-e^{x}
$$

Section 2.7: 20. (25 points) Prove the binomial theorem

$$
(x+y)^{n}=\sum_{k}\binom{n}{k} x^{k} y^{n-k}
$$

by comparing the coefficient of t^{n} / n ! on both sides of the equation $e^{t(x+y)}=$ $e^{t x} e^{t y}$. Prove the multinomial theorem

$$
\left(x_{1}+\ldots+x_{k}\right)^{n}=\sum_{r_{1}+\ldots+r_{k}=n} \frac{n!}{r_{1}!\cdots r_{k}!} x_{1}^{r_{1}} \cdots x_{k}^{r_{k}}
$$

by a similar method.
Solution: We have

$$
\sum_{n} \frac{1}{n!}\left(x_{1}+\ldots+x_{k}\right)^{n} t^{n}=e^{t\left(x_{1}+\ldots+x_{k}\right)}=e^{t x_{1}} \cdots e^{t x_{k}}=\sum_{r_{1}} \frac{x_{1}^{r_{1}}}{r_{1}!} \cdots \sum_{r_{k}} \frac{x_{k}^{r_{k}}}{r_{k}!}
$$

so

$$
\frac{1}{n!}\left(x_{1}+\ldots+x_{k}\right)^{n}=\sum_{r_{1}+\ldots+r_{k}=n} \frac{1}{r_{1}!\cdots r_{k}!} x_{1}^{r_{1}} \cdots x_{k}^{r_{k}}
$$

By multiplying by n ! we get the desired identity.
27. (25 points) Let $D(n)$ be the number of derangements on n letters. We proved in class that the exponential generating function for $D(n)$ has the form

$$
D(x)=\frac{e^{-x}}{1-x}=\sum_{n} \frac{D(n)}{n!} x^{n} .
$$

(b) Prove, by any method, that $D(n+1)=(n+1) D(n)+(-1)^{n+1}$

Solution: We have

$$
\sum_{n} \frac{D(n+1)}{n!} x^{n}=D^{\prime}(x)=\frac{-e^{-x}(1-x)-e^{-x}(-1)}{(1-x)^{2}}=\frac{x e^{-x}}{(1-x)^{2}}
$$

On the other hand,

$$
\begin{aligned}
\sum_{n}\left((n+1) D(x)+(-1)^{n+1}\right) \frac{x^{n}}{n!} & =x D^{\prime}(x)+D(x)-e^{-x}=\frac{x^{2} e^{-x}}{(1-x)^{2}}+\frac{e^{-x}}{1-x}-e^{-x}= \\
\frac{e^{-x}\left(x^{2}+1-x-(1-x)^{2}\right)}{(1-x)^{2}} & =\frac{e^{-x}\left(x^{2}+1-x-1+2 x-x^{2}\right)}{(1-x)^{2}}=\frac{x e^{-x}}{(1-x)^{2}}
\end{aligned}
$$

Therefore the exponential generating functions for the left and right hand sides coincide, and the recursion holds.
(c) Prove, by any method, that $D(n+1)=n(D(n)+D(n-1))$

Solution: We have

$$
D(n+1)=(n+1) D(n)+(-1)^{n+1}, D(n)=n D(n-1)+(-1)^{n}
$$

so we can add these equations and get
$D(n+1)+D(n)=(n+1) D(n)+n D(n-1), D(n+1)=n D(n)+n D(n-1)$.
(e) Let $D_{k}(n)$ be the number of permutations of n letters with exactly k fixed points. Show that

$$
\sum_{k, n} D_{k}(n) \frac{x^{n} y^{k}}{n!}=\frac{e^{-x(1-y)}}{1-x}
$$

Solution: We have $D_{k}(n)=\binom{n}{k} D(n-k)$, so

$$
\begin{gathered}
\sum_{k, n} D_{k}(n) \frac{x^{n} y^{k}}{n!}=\sum_{k, n}\binom{n}{k} D(n-k) \frac{x^{n} y^{k}}{n!}=\sum_{n, k} \frac{n!}{k!(n-k)!} D(n-k) \frac{x^{n} y^{k}}{n!}= \\
\sum_{n, k} \frac{x^{k} y^{k}}{k!} \cdot \frac{x^{n-k} D(n-k)}{(n-k)!}=e^{x y} \cdot \frac{e^{-x}}{1-x}=\frac{e^{x y-x}}{1-x}
\end{gathered}
$$

