MAT 146, Spring 2019 Solutions to homework 6

Section 3.19: 20. (25 points) Find the largest integer that is not of the form $6 x+10 y+15 z$ where x, y, z are nonnegative integers. Prove that your answer is correct, that is, your number is no representable in this form, and that every larger integer is so representable.

Solution: Let us prove that every number greater than or equal to 30 is representable. Indeed,

$$
\begin{gathered}
30=10+10+10,31=6+10+15,32=6+6+10+10,33=15+6+6+6, \\
34=6+6+6+6+10,35=15+10+10
\end{gathered}
$$

Now, every number greater than or equal to 30 can be written as $n=30+$ $6 q+r$ where $p \geq 0$ and $0 \leq r \leq 5$, and we just proved that we can change $30+r$, so we can change n as well.

Finally, let us prove that we cannot change 29. Indeed, suppose that $29=6 x+10 y+15 z$, then $z=0$ or $z=1$. If $z=0$ then $29=6 x+10 y$ which is impossible since the right hand side is even. If $z=1$ then

$$
29=6 x+10 y+15,14=6 x+10 z
$$

and it is easy to see that this is impossible.
A. (25 points) Define a sequence a_{n} as follows: $a_{n}=1$ if n cents can be changed using 3 - and 4 -cent coins only, and $a_{n}=0$ otherwise. Find the closed formula for the generating function $\sum a_{n} x^{n}$.

Solution: We can change $0,3,4$ and $n \geq 6$ cents, so
$\sum a_{n} x^{n}=1+x^{3}+x^{4}+\sum_{n=6}^{\infty} x^{n}=1+x^{3}+x^{4}+\frac{x^{6}}{1-x}=\frac{1-x+x^{3}-x^{5}+x^{6}}{1-x}$.
B. (25 points) Generalizing the previous problem, let p and q be two coprime integers. Let $a_{n}=1$ if n cents can be changed using p - and q-cent coins only, and $a_{n}=0$ otherwise. Find the closed formula for the generating function $\sum a_{n} x^{n}$.

Solution: Every integer n can be uniquely written in the form $n=a p+b q$ where $0 \leq a \leq q-1$. It can be changed if and only if $b \geq 0$. Therefore

$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{a=0}^{q-1} \sum_{b=0}^{\infty} x^{a p+b q}=\sum_{a=0}^{q-1} x^{a p} \sum_{b=0}^{\infty} x^{b q}= \\
\frac{1-x^{p q}}{1-x^{p}} \cdot \frac{1}{1-x^{q}}=\frac{\left(1-x^{p q}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)} .
\end{gathered}
$$

One can check that for $p=3, q=4$ we recover the answer to problem A above.
C. (25 points) Find the generating function for the number of partitions where all parts are divisible by 7 .

Solution: We can say that this is a money changing problem where the coins have values $7,14, \ldots$, so the generating function has the form

$$
\frac{1}{\left(1-x^{7}\right)\left(1-x^{14}\right) \cdots}=\prod_{k=1}^{\infty} \frac{1}{1-x^{7 k}}
$$

