MAT 146, Spring 2019
 Solutions to homework 7

Section 2.7: 11. (25 points) Find the radius of convergence of the following series:
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$; (c) $1+5 x^{2}+25 x^{4}+125 x^{6}+\ldots$

Solution: (a) We have $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$, so

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n^{2}}}=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}}}=1
$$

Therefore $R=\frac{1}{\lim \sup _{n \rightarrow \infty} \sqrt[n]{a_{n}}}=1$.
(b) We have

$$
1+5 x^{2}+25 x^{4}+125 x^{6}+\ldots=\frac{1}{1-5 x^{2}}
$$

so it has poles at $x= \pm \frac{1}{\sqrt{5}}$. The radius of convergence equals the distance from the origin to the nearest pole, so it is equal to $R=\frac{1}{\sqrt{5}}$.
A: (25 points) (a) Find the coefficients of the power series

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{1-x}{(1-2 x)(1+3 x)}
$$

Solution: We have

$$
\begin{gathered}
\frac{1-x}{(1-2 x)(1+3 x)}=\frac{A}{1-2 x}+\frac{B}{1+3 x}, \\
A(1+3 x)+B(1-2 x)=1-x, A+B=1,3 A-2 B=-1 .
\end{gathered}
$$

Since $2 A+2 B=2$, we can add the equations and get $5 A=1$,

$$
A=\frac{1}{5}, B=\frac{4}{5} .
$$

Therefore

$$
A(x)=\frac{1}{5} \cdot \frac{1}{1-2 x}+\frac{4}{5} \cdot \frac{1}{1+3 x}=\sum_{n=0}^{\infty}\left(\frac{1}{5} \cdot 2^{n}+\frac{4}{5} \cdot(-3)^{n}\right) x^{n}
$$

(b) Find the radius of convergence of this series.

Solution: The function $A(x)$ has poles at $x=1 / 2$ and $x=-1 / 3$, and the radius of convergence equals the distance from the origin to the nearest pole. Therefore $R=1 / 3$.

B: (25 points) The sequence $\left\{a_{n}\right\}$ satisfies the recurrence relation

$$
15 a_{n}-5 a_{n-1}+3 a_{n-2}-a_{n-3}=0
$$

with some initial conditions a_{0}, a_{1}, a_{2}.
(a) Find the radius of convergence of the series $\sum a_{n} x^{n}$.

Solution: Let $A(x)=\sum a_{n} x^{n}$, then the recurrence translates into linear equation
$15 A(x)-5 x A(x)+3 x^{2} A(x)-x^{3} A(x)=15 a_{0}+\left(15 a_{1}-5 a_{0}\right) x+\left(15 a_{2}-5 a_{1}+3 a_{0}\right) x^{2}$.
Therefore

$$
\begin{gathered}
A(x)=\frac{15 a_{0}+\left(15 a_{1}-5 a_{0}\right) x+\left(15 a_{2}-5 a_{1}+3 a_{0}\right) x^{2}}{15-5 x+3 x^{2}-x^{3}}= \\
\frac{15 a_{0}+\left(15 a_{1}-5 a_{0}\right) x+\left(15 a_{2}-5 a_{1}+3 a_{0}\right) x^{2}}{\left(5+x^{2}\right)(3-x)} .
\end{gathered}
$$

Assuming there are no cancellations, the function has poles at $x=3$ and $x= \pm \sqrt{5} i$. Since $\sqrt{5}<3$, the radius of convergence equals $R=\sqrt{5}$.
(b) Estimate a_{n} without solving the recurrence.

Solution: Since

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{1}{R}=\frac{1}{\sqrt{5}}
$$

for all ε we have

$$
\left|a_{n}\right|<\left(\frac{1}{\sqrt{5}}+\varepsilon\right)^{n}
$$

for all but finitely many n, and

$$
\left|a_{n}\right|>\left(\frac{1}{\sqrt{5}}-\varepsilon\right)^{n}
$$

for infinitely many n.

C: (25 points) Recall that the exponential generating function for the number of derangements equals

$$
D(x)=\sum \frac{D_{n}}{n!} x^{n}=\frac{e^{-x}}{1-x}
$$

(a) Find all poles of $D(x)$ and principal parts at these poles.

Solution: The function $D(x)$ has a pole at $x=1$ with the principal part $\frac{e^{-1}}{1-x}$.
(b) Use "pole removal" procedure to estimate D_{n}.

Solution: The function

$$
D(x)-\frac{e^{-1}}{1-x}=\frac{e^{-x}-e^{-1}}{1-x}
$$

has a removable singularity at $x=1$ (by the above, this can be also checked by L'Hôpital rule), and hence no poles. The corresponding series

$$
D(x)-\frac{e^{-1}}{1-x}=\sum_{n=0}^{\infty}\left(\frac{D_{n}}{n!}-e^{-1}\right) x^{n}
$$

converges everywhere, so $R=\infty$. Therefore for all ε one has

$$
\left|\frac{D_{n}}{n!}-e^{-1}\right|<\varepsilon^{n}
$$

for all but finitely many n.

