
MAT 148, Winter 2016
Solutions to HW 4

24. Prove that the dimension of the Reed-Muller code R(r,m) equals

k = 1 +

(
m

1

)
+ . . . +

(
m

r

)
by induction using the identity

(
m
i

)
+
(

m
i+1

)
=
(
m+1
i+1

)
.

Solution: Let us prove it by induction in m. For m = 0 the only Reed-
Muller code has generator matrix G(0, 0) = (1) with 1 row. Assume that the
formula for k holds for m, let us prove it for m + 1. Since

G(r + 1,m + 1) =

(
G(r + 1,m) G(r + 1,m)

0 G(r,m)

)
,

one has
k(r + 1,m + 1) = k(r + 1,m) + k(r,m) =[

1 +

(
m

1

)
+ . . . +

(
m

r + 1

)]
+

[
1 +

(
m

1

)
+ . . . +

(
m

r

)]
=

1 +

[(
m

1

)
+ 1

]
+

[(
m

2

)
+

(
m

1

)]
+ . . . +

[(
m

r + 1

)
+

(
m

r

)]
=

1 +

(
m + 1

1

)
+ . . . +

(
m + 1

r + 1

)
.

25. Show that R(r1,m) ⊂ R(r2,m) if r1 ≤ r2.

Solution: Let us prove by induction in m that the rows of the generator
matrix G(r1,m) are contained in the set of rows for G(r2,m). For m = 0 the
statement is clear. Assume that this holds for m, let us prove it for m + 1.
One has:

G(r1 + 1,m + 1) =

(
G(r1 + 1,m) G(r1 + 1,m)

0 G(r1,m)

)
⊂

⊂
(
G(r2 + 1,m) G(r2 + 1,m)

0 G(r2,m)

)
= G(r2 + 1,m + 1).
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26. Compute the dimensions and minimum weights of all the Reed-Muller
codes of length 8.

Solution: The Reed-Muller code R(r,m) has length 8 if m = 3. The
dimension equals 1 +

(
m
1

)
+ . . . +

(
m
r

)
, and the minimal weight equals 2m−r.

For r = 0 the dimension is 1 and the minimal weight is 8; for r = 1 the
dimension equals 1 +

(
3
1

)
= 4 and the minimal weight is 4; for r = 2 the

dimension equals 1 +
(
3
1

)
+
(
3
2

)
= 7 and the minimal weight is 2; for r = 3

the dimension equals 1 +
(
3
1

)
+
(
3
2

)
+
(
3
3

)
= 8 and the minimal weight is 1.

Remark: Although it was not a part of the problem, let us list all the
generator matrices for the codes R(r, 3). We will do it inductively:

G(0, 0) = G(1, 0) = (1); G(0, 1) = (1 1),

G(1, 1) =

(
G(1, 0) G(1, 0)

0 G(0, 0)

)
=

(
1 1
0 1

)
;

G(0, 2) = (1 1 1 1), G(1, 2) =

(
G(1, 1) G(1, 1)

0 G(0, 1)

)
=

1 1 1 1
0 1 0 1
0 0 1 1

 ;

G(2, 2) =

(
G(2, 1) G(2, 1)

0 G(1, 1)

)
=


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 ;

G(0, 3) = (1 1 1 1 1 1 1 1),

G(1, 3) =

(
G(1, 2) G(1, 2)

0 G(0, 2)

)
=


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 ;

G(2, 3) =

(
G(2, 2) G(2, 2)

0 G(1, 2)

)
=



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1


;
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G(3, 3) =

(
G(3, 2) G(3, 2)

0 G(2, 2)

)
=



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


.

Note that one can also use the procedure described in p. 33 to generate
G(r, 3) (with slightly different order of rows) directly.

C: Prove that for all k and t there exist n and a linear [n, k] code correcting
t errors. Hint: Use Varshamov-Gilbert Bound.

Solution: A code corrects t errors if its minimal weight is at least d =
2t+ 1. The Varshamov-Gilbert bound states that there is an [n, k] code with
minimal weight at least d as long as the following inequality is satisfied:

1 +

(
n− 1

1

)
+ . . . +

(
n− 1

d− 2

)
< 2n−k. (1)

Therefore it is sufficient to prove that for fixed k and d one can find n
satisfying (1). To simplify a problem, consider n very large. The left hand
side of (1) is a polynomial in n of degree d − 2, while the right hand side
is proportional to 2n. Since 2n grows faster than any polynomial of fixed
degree, for large n the inequality (1) is satisfied.
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