2. Prove that $\mathbb{Z}_2[x]/(x^3 - 1)$ is not a field by presenting an element with no multiplicative inverse.

Solution: Let $f(x) = x^3 - 1$. We have $(x - 1)(x^2 + x + 1) = x^3 - 1 = 0 \mod f(x)$. Suppose that $x - 1$ is invertible modulo $f(x)$, then

$$x^2 + x + 1 = (x - 1)^{-1}(x - 1)(x^2 + x + 1) = (x - 1)^{-1} \cdot 0 = 0,$$

contradiction. Therefore $x - 1$ has no multiplicative inverse. Similarly, $x^2 + x + 1$ has no multiplicative inverse as well.

9a. Write the generator polynomials and generator matrices for all binary cyclic codes of length 7.

Solution: We have $x^7 - 1 = x^{23 - 1} - 1$, so it is divisible by all irreducible polynomials with degrees dividing 3. Therefore:

$$x^7 - 1 = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1) \mod 2.$$

Therefore we have 6 possible cyclic codes:

$$g(x) = x + 1, \quad G = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix};$$

$$g(x) = x^3 + x + 1, \quad G = \begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{pmatrix};$$

$$g(x) = x^3 + x^2 + 1, \quad G = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{pmatrix};$$
\[g(x) = (x+1)(x^3 + x + 1) = x^4 + x^3 + x^2 + 1, \quad G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}; \]

\[g(x) = (x+1)(x^3 + x^2 + 1) = x^4 + x^2 + x + 1, \quad G = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}; \]

\[g(x) = (x^3+x+1)(x^3+x^2+1) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, \quad G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}. \]

Remark: In principle, one may consider two more codes with

\[g_2(x) = (x+1)(x^3 + x + 1)(x^2 + x + 1) = x^7 - 1 = 0 \mod x^7 - 1, \]

The cyclic code for \(g_1 \) contains all binary sequences of length 7 as codewords, while the cyclic code for \(g_2 \) has only 0 as a codeword.

11. Which length 7 binary cyclic codes contain the vector \((0, 1, 0, 0, 1, 1, 1)\)?

Solution: This vector represents a polynomial \(x^5 + x^2 + x + 1 \), which can be factored as follows:

\[x^5 + x^2 + x + 1 = (x + 1)(x^4 + x^3 + x^2 + 1) = (x + 1)^2(x^3 + x + 1). \]

The set of codewords in a cyclic code with generating polynomial \(g(x) \) coincides with the set of polynomials \(\mod x^n - 1 \), divisible by \(g(x) \). Therefore, all possible \(g(x) \) should divide \((x + 1)^2(x^3 + x + 1) \), so

\[g(x) = (x + 1), \quad g(x) = (x^3 + x + 1) \text{ or } g(x) = (x + 1)(x^3 + x + 1). \]

The generating matrices for these codes are written above.

13. We know that modulo 2

\[x^{15}1 = (x + 1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1). \]

How many binary cyclic codes of length 15 are there?

Solution: The generating polynomial \(g(x) \) for a cyclic code should divide \(x^{15} - 1 \), so should be a product of several of the above 5 irreducible factors. Such a product can contain 1, 2, 3, or 4 factors, so the number of options for \(g(x) \) is

\[\binom{5}{1} + \binom{5}{2} + \binom{5}{3} + \binom{5}{4} = 30. \]

Therefore, there are 30 binary cyclic codes of length 15 (or 32, if one includes two trivial codes with \(g(x) = 1 \) and \(g(x) = x^{15} - 1 \)).