MAT 150A, Fall 2015 Practice problems for Midterm 2

1. Prove that every group with 4 elements is isomorphic either to \mathbb{Z}_4 or to $\mathbb{Z}_2 \times \mathbb{Z}_2$ (and is therefore commutative).

2. Are the following matrices orthogonal? Do they preserve orientation? Describe the corresponding transformations geometrically.

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

3. Find the area of the parallelogram with vertices (0,0), (2,3), (3,2) and (5,5).

4. Let A be the matrix of reflection in x - y plane, and let B be the matrix of reflection in y - z plane.

a) Write the 3×3 matrices A and B explicitly.

b) Compute the matrix products AB and BA.

c) Prove that AB and BA are rotations and find the axis of these rotations.

5. Describe all homomorphisms (a) From \mathbb{Z}_5 to \mathbb{Z}_7 (b) From \mathbb{Z}_4 to \mathbb{Z}_6

6. Prove that the groups \mathbb{Z}_6 and S_3 are not isomorphic

7. If we label the diagonals in the square by 1 and 2, every isometry of the square would permute them. This gives a homomorphism from D_4 to S_2 . Describe its kernel and image.