MAT 150A, Fall 2017
 Practice problems for the final exam

1. Let $f: S_{n} \rightarrow G$ be any homomorphism (to some group G) such that $f(12)=e$. Prove that $f(x)=e$ for all x.
2. Are the following subsets of D_{n} subgroups? Normal subgroups?
a) All reflections in D_{n}
b) All rotations in D_{n}
c) $\{1, s\}$ where s is some reflection
3. Consider the set

$$
G=\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right): a \neq 0\right\}
$$

and a function $f: G \rightarrow \mathbb{R}^{*}$,

$$
f\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=a
$$

a) Prove that G is a subgroup of $G L_{2}$
b) Prove that f is a homomorphism.
c) Find the kernel and image of f.
4. Consider the permutation

$$
f=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 6 & 1 & 7 & 3 & 2 & 4
\end{array}\right)
$$

a) Decompose f into non-intersecting cycles
b) Find the order of f
c) Find the sign of f
d) Compute f^{-1}
5. Find all possible orders of elements in D_{6}.
6. a) Prove that every rotation of the plane is a composition of two reflections.

What is the angle between the reflecting lines?
b) Prove that every rotation is conjugate to its inverse in D_{n}.
7. The trace of a 2×2 matrix is defined as

$$
\operatorname{tr}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a+d
$$

a) Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all A and B
b) Prove that $\operatorname{tr}\left(A^{-1} X A\right)=\operatorname{tr}(X)$, so the conjugate matrices have the same trace.
8. Let A be the counterclockwise rotation by 90°, let B be the reflection in the line $\{x=y\}$. Present the transformation $A, B, A B, B A$ by matrices, describe $A B$ and $B A$ geometrically.
9. Are there two non-isomorphic groups with (a) 6 elements (b) 7 elements (c) 8 elements?
10. Is it possible to construct a surjective homomorphism from a group with 6 elements to a group with (a) 7 elements (b) 5 elements (c) 3 elements? If yes, construct such a homomorphism. If no, explain why this is not possible. 11. Is it possible to construct an injective homomorphism from a group with 6 elements to a group with (a) 3 elements (b) 9 elements (c) 12 elements? If yes, construct such a homomorphism. If no, explain why this is not possible. 12. Are the following matrices orthogonal? Do they preserve orientation?

$$
\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}
\end{array}\right) .
$$

13. Prove that for every n there is a group with n elements.
14. Solve the system of equations

$$
\left\{\begin{array}{l}
x=3 \bmod 5 \\
x=4 \bmod 6
\end{array}\right.
$$

15. Compute $3^{100} \bmod 7$.
16. A triangulation of an n-gon is a collection of $(n-3)$ non-intersecting diagonals. For $n=4,5,6$:
a) Find the total number of triangulations for a regular n-gon
b) Describe the orbits and stabilizers of the action of D_{n} on the set of triangulations.
