MAT 150A, Fall 2017
 Practice problems for the final exam

1. Let $f: S_{n} \rightarrow G$ be any homomorphism (to some group G) such that $f(12)=e$. Prove that $f(x)=e$ for all x.

Solution: The kernel of f is a normal subgroup in S_{n} containing (12). Since it is normal, it also contains all transpositions. Since it is closed under multiplication and every permutation is a product of transpositions, the kernel coincides with the whole S_{n}, so $f(x)=e$ for all x.
2. Are the following subsets of D_{n} subgroups? Normal subgroups?
a) All reflections in D_{n}
b) All rotations in D_{n}
c) $\{1, s\}$ where s is some reflection

Solution: (a) No: it does not contain the identity! (b) Yes, it is a normal subgroup. It contains the identity, the product of two rotations is a rotation and the inverse of a rotation is a rotation, so it is a subgroup. Also, $\operatorname{det}\left(g^{-1} x g\right)=\operatorname{det}(x)$, so any matrix conjugate to a rotation must have determinant 1 and hence is a rotation, so it is normal. (c) It is clearly a cyclic subgroup generated by s, but it is not normal: if s_{1} is some other reflection then one can check (see also problem 6) that $\left(s_{1}\right)^{-1} s s_{1} \neq s$.
3. Consider the set

$$
G=\left\{\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right): a \neq 0\right\}
$$

and a function $f: G \rightarrow \mathbb{R}^{*}$,

$$
f\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=a
$$

a) Prove that G is a subgroup of $G L_{2}$
b) Prove that f is a homomorphism.
c) Find the kernel and image of f.

Solution: a) We have to check 3 defining properties a subgroup:

- Identity is in G : take $a=1, b=0$
- Closed under multiplication:

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a a_{1} & a b_{1}+b \\
0 & 1
\end{array}\right)
$$

- Closed under taking inverses: we need $a a_{1}=1, a b_{1}+b=0$, so

$$
a_{1}=1 / a, b_{1}=-b / a
$$

b) From (a) we see that $f(A B)=a a_{1}=f(A) f(B)$.
c) Since a can be arbitrary, $\operatorname{Im}(f)=\mathbb{R}^{*}$. Now

$$
\operatorname{Ker}(f)=\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right): b \text { arbitrary }\right\} .
$$

4. Consider the permutation

$$
f=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 6 & 1 & 7 & 3 & 2 & 4
\end{array}\right)
$$

a) Decompose f into non-intersecting cycles
b) Find the order of f
c) Find the sign of f
d) Compute f^{-1}

Solution: $f=\left(\begin{array}{lll}1 & 5 & 3\end{array}\right)(26)(47)$, it has order $\operatorname{lcm}(3,2,2)=6$ and sign $(-1)^{3-1}(-1)(-1)=1, f^{-1}=(135)(26)(47)$.
5. Find all possible orders of elements in D_{6}.

Solution: The group contains reflections and rotations by multiples of $360^{\circ} / 6=60^{\circ}$. Every reflection has order 2, identity has order 1 , rotations by 60° and 300° have order 6 , rotations by 120° and 240° have order 3 and rotation by 180° has order 2 .
6. a) Prove that every rotation of the plane is a composition of two reflections. What is the angle between the reflecting lines?
b) Prove that every rotation is conjugate to its inverse in D_{n}.

Solution: One can check geometrically that if s_{1} and s_{2} are two reflections, then $s_{1} s_{2}$ and $s_{2} s_{1}$ are rotations by angles 2α and -2α, where α is the angle between reflecting lines. (a) Given a rotation R by angle α, we can
pick two lines with angle $\alpha / 2$ and by the above $R=s_{1} s_{2}, R^{-1}=s_{2} s_{1}$. (b) Now

$$
R^{-1}=s_{2} s_{1}=s_{2}\left(s_{1} s_{2}\right) s_{2}^{-1}=s_{2} R s_{2}^{-1},
$$

so R and R^{-1} are conjugate by s_{2}.
7. The trace of a 2×2 matrix is defined as

$$
\operatorname{tr}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a+d
$$

a) Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all A and B
b) Prove that $\operatorname{tr}\left(A^{-1} X A\right)=\operatorname{tr}(X)$, so the conjugate matrices have the same trace.

Solution: a) We have

$$
A B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)=\left(\begin{array}{ll}
a a_{1}+b c_{1} & a b_{1}+b d_{1} \\
c a_{1}+d c_{1} & c b_{1}+d d_{1}
\end{array}\right),
$$

so $\operatorname{tr}(A B)=a a_{1}+b c_{1}+c b_{1}+d d_{1}$. Clearly, this expression will not change if we swap A and B.
b) By part (a), $\operatorname{tr}\left(A^{-1} \cdot X A\right)=\operatorname{tr}\left(X A \cdot A^{-1}\right)=\operatorname{tr}(X)$.
8. Let A be the counterclockwise rotation by 90°, let B be the reflection in the line $\{x=y\}$. Present the transformation $A, B, A B, B A$ by matrices, describe $A B$ and $B A$ geometrically.

Solution:

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), A B=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), B A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

so $A B$ and $B A$ are reflections in the y-axis and in the x-axis respectively.
9. Are there two non-isomorphic groups with (a) 6 elements (b) 7 elements (c) 8 elements?

Solution: (a) Yes, for example D_{3} and \mathbb{Z}_{6}. The orders of elements in D_{3} are $1,2,3$, while \mathbb{Z}_{6} has an element of order 6 , so they are not isomorphic. (b) No: by Lagrange theorem the order of every element x divides 7 , so it should be 1 (and $x=e$) or 7 . If the order of x equals 7 , then this is just the cyclic group generated by x. So every two groups with 7 elements are cyclic and
hence isomorphic. (c) Yes, for example D_{4} and \mathbb{Z}_{8}. The orders of elements in D_{4} are $1,2,4$, while \mathbb{Z}_{8} has an element of order 8 , so they are not isomorphic.
10. Is it possible to construct a surjective homomorphism from a group with 6 elements to a group with (a) 7 elements (b) 5 elements (c) 3 elements? If yes, construct such a homomorphism. If no, explain why this is not possible.

Solution: (a) No, since $7>6$. (b) No, since by counting formula the size of the image should divide 6. (c) Yes, for example

$$
f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{3}, f(k)=k \quad \bmod 3
$$

11. Is it possible to construct an injective homomorphism from a group with 6 elements to a group with (a) 3 elements (b) 9 elements (c) 12 elements? If yes, construct such a homomorphism. If no, explain why this is not possible.

Solution: The image of an injective homomorphism should be a subgroup with 6 elements. (a) No, since $3<6$. (b) No, since by Lagrange Theorem the size of the image divides 9 (c) Yes, for example

$$
f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{1} 2, f(k)=2 k \quad \bmod 12
$$

12. Are the following matrices orthogonal? Do they preserve orientation?

$$
\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}
\end{array}\right) .
$$

Solution: A matrix is orthogonal if $A^{t} A=I$, and preserves orientation if $\operatorname{det}(A)>0$, so: (a) Not orthogonal, preserves. (b) Orthogonal, reverses. (c) Orthogonal, preserves.
13. Prove that for every n there is a group with n elements.

Solution: Indeed, consider cyclic group \mathbb{Z}_{n}.
14. Solve the system of equations

$$
\left\{\begin{array}{l}
x=3 \quad \bmod 5 \\
x=4 \quad \bmod 6
\end{array}\right.
$$

Solution: By Chinese Remainder Theorem, the solution is unique modulo 30 . Since $x=4 \bmod 6$, we get

$$
x=4,10,16,22,28 \quad \bmod 30
$$

Among these values, only $x=28$ is equal to 3 modulo 5 .
15. Compute $3^{100} \bmod 7$.

Solution: We have
$3^{1}=3,3^{2}=2,3^{3}=2 \cdot 3=6,3^{4}=6 \cdot 3=4,3^{5}=4 \cdot 3=5,3^{6}=5 \cdot 3=1 \quad \bmod 7$
Therefore

$$
3^{100}=\left(3^{6}\right)^{16} \cdot 3^{4}=1^{16} \cdot 4=4 \quad \bmod 7
$$

16. A triangulation of an n-gon is a collection of $(n-3)$ non-intersecting diagonals. For $n=4,5,6$:
a) Find the total number of triangulations for a regular n-gon
b) Describe the orbits and stabilizers of the action of D_{n} on the set of triangulations.
(6)
a) $h=4$

One orbit with 2 elements,

stalibizer $=\{e$, reflections
in diagonals, rotation by $\left.180^{\circ}\right\}$

$$
2 \cdot 4=8=\left|D_{4}\right|
$$

b) $n=5$

5 triangulation in a single orbit Stabilizer $=\{e$, reflection $\}$

$$
5 \cdot 2=10=\left|D_{5}\right|
$$

c) $n=6$

$$
\begin{aligned}
& 10 \text { obit } 1=6 \\
& \text { stabilizer }=\text { ie, reflection }) \\
& \quad 6 \cdot 2=12=\left|D_{6}\right| \\
& \mid \text { Orbit } \mid=2 \\
& \text { Stabilizer }=D_{3} \\
& 2 \cdot 6=12=\left|D_{5}\right|
\end{aligned}
$$

- 10rbitl $=2$

Stabilizer = $\left\{e\right.$, rotation by $\left.180^{\circ}\right\}$
$2 \cdot 6=12=\left|D_{6}\right|$
In total, 14 triangulations

