6.2. (25 points) Describe all homomorphisms \(\varphi : \mathbb{Z} \to \mathbb{Z} \). Determine which are injective, which are surjective and which are isomorphisms.

Solution: If \(\varphi \) is an homomorphism then \(\varphi(0) = 0 \), and for all \(x, y \) \(\varphi(x + y) = \varphi(x) + \varphi(y) \). Suppose that \(\varphi(1) = n \), then \(\varphi(2) = \varphi(1 + 1) = \varphi(1) + \varphi(1) = 2n \). Similarly (one can prove this by induction), for all \(k > 0 \) \(\varphi(k) = kn \). Now \(\varphi(-k) + \varphi(k) = \varphi(0) = 0 \), so \(\varphi(-k) = -\varphi(k) = -kn \). Therefore for all \(x \) we have \(\varphi(x) = nx \). Indeed, such function is a homomorphism.

It is injective if and only if \(\ker \varphi = \{0\} \), that is, if and only if \(n \neq 0 \). Since all elements in the image of \(\varphi \) are divisible by \(n \), it is surjective for \(n = \pm 1 \). As a result, \(\varphi \) is an isomorphism if and only if \(n = \pm 1 \), so \(\varphi(x) = x \) or \(\varphi(x) = -x \).

6.3. (25 points) Show that the functions \(f = 1/x, g = (x - 1)/x \) generate the group of functions, the law of composition being composition of functions, that is isomorphic to the symmetric group \(S_3 \).

Solution: Let us compute various compositions of \(f \) and \(g \):

\[
\begin{align*}
 f(f(x)) &= x, \quad f(g(x)) = \frac{x}{x - 1}, \quad g(f(x)) = \frac{1}{x - 1} = 1 - x, \\
 g(g(x)) &= \frac{(x - 1)/x}{x} = \frac{x - 1 - x}{x - 1} = 1 - \frac{1}{x} = \frac{1}{1 - x}.
\end{align*}
\]

Together with \(f \) and \(g \), we get six different different functions, and we can describe all compositions between them: in the table below the cell in row \(A \) and column \(B \) contains \(A(B(x)) \).

\[
\begin{array}{cccccccc}
 e = x & f = 1/x & g = (x - 1)/x & fg = x/(x - 1) & gf = 1 - x & g^2 = 1/(1 - x) \\
 \hline
 x & x & 1/x & (x - 1)/x & x/(x - 1) & 1 - x & 1/(1 - x) \\
 1/x & 1/x & x & x/(x - 1) & (x - 1)/x & 1/(1 - x) & 1 - x \\
 (x - 1)/x & (x - 1)/x & 1 - x & 1/(1 - x) & x/(x - 1) & 1 - x & x/(x - 1) \\
 x/(x - 1) & x/(x - 1) & 1 - x & 1/(1 - x) & x & 1 - x & (x - 1)/x \\
 1 - x & 1 - x & (x - 1)/x & 1/x & 1/(1 - x) & x & x/(x - 1) \\
 1/(1 - x) & 1/(1 - x) & x & 1 - x & 1/x & (x - 1)/x &
\end{array}
\]

From the table, we see that \(g(g(g(x))) = x \), so \(g \) has order 3, while \(f \) clearly has order 2. Consider the function \(M : G \to S_3 \) which is uniquely defined by the equations:

\[
M(f) = (1 \ 2), \quad M(g) = (1 \ 2 \ 3).
\]

We can fill in the analogous multiplication table for \(S_3 \):

\[
\begin{array}{cccccccc}
 e & (1) & (2) & (1 \ 2 \ 3) & (2 \ 3) & (1 \ 3) & (1 \ 3 \ 2) \\
 \hline
 (1) & e & (1 \ 2) & (1 \ 2 \ 3) & (2 \ 3) & (1 \ 3) & (1 \ 3 \ 2) \\
 (2) & (1 \ 2) & e & (1 \ 2 \ 3) & (1 \ 3 \ 2) & (1 \ 2) & (1 \ 3) \\
 (1 \ 2 \ 3) & (1 \ 3 \ 2) & (1 \ 2 \ 3) & e & (1 \ 2) & (1 \ 3 \ 2) & (1 \ 2 \ 3) \\
 (1 \ 3) & (1 \ 3) & (1 \ 2 \ 3) & (1 \ 2) & (1 \ 3 \ 2) & e & (1 \ 2 \ 3) \\
 (1 \ 3 \ 2) & (1 \ 3 \ 2) & (2 \ 3) & (1 \ 3) & (1 \ 2) & (1 \ 2 \ 3) & e \\
\end{array}
\]
We see that M transforms the first table to the second one, so it identifies products in two groups, and hence M is a homomorphism. Since it is clearly bijective, it is an isomorphism.

8.6. (25 points) Let $\varphi : G \to G'$ be a group homomorphism. Suppose that $|G| = 18, |G'| = 15$ and that φ is not the trivial homomorphism. What is the order of the kernel?

Solution: By Counting Formula, $|\text{Ker}(\varphi)| \cdot |\text{Im}(\varphi)| = 18$, so $|\text{Im}(\varphi)|$ divides 18. Since $\text{Im}(\varphi)$ is a subgroup of G', by Lagrange Theorem $|\text{Im}(\varphi)|$ also divides 15. Therefore $|\text{Im}(\varphi)|$ can be equal to 1 or 3. If $|\text{Im}(\varphi)| = 1$, then φ is trivial. We conclude that $|\text{Im}(\varphi)| = 3$ and $|\text{Ker}(\varphi)| = 6$.

8.9. (25 points) Let G be a finite group. Under which circumstances is the map $\varphi(x) = x^2$ an automorphism of G?

Solution: If φ is a homomorphism, then for all x, y $(xy)^2 = xyxy = x^2y^2$. If we multiply this equation by x^{-1} on the left and by y^{-1} on the right, we get $yx = xy$. Therefore φ is a homomorphism if and only if G is commutative.

To check if it is an isomorphism, it is sufficient to check if it has trivial kernel. This kernel consists of identity and all elements of order 2. Therefore φ is an isomorphism if and only if G is commutative and it does not contain elements of order 2.