5.1 (25 points) Let \(\varphi : G \to G' \) be a surjective homomorphism. Prove that if \(G \) is cyclic then \(G' \) is cyclic, and if \(G \) is abelian, then \(G' \) is abelian.

Proof: Suppose that \(G \) is cyclic with generator \(g \), so every element of \(G \) has the form \(g^k \) for some \(k \). Since \(\varphi \) is surjective, every element of \(G' \) has the form \(\varphi(z) \) for some \(z \). Then \(z = g^k \) and

\[
\varphi(z) = \varphi(g^k) = \varphi(g \cdots g) = \varphi(g) \cdots \varphi(g) = \varphi(g)^k.
\]

Therefore \(G' \) is a cyclic group generated by \(\varphi(g) \).

Suppose that \(G \) is abelian, and let \(x, y \in G' \). Since \(\varphi \) is surjective, we have \(x = \varphi(z) \) and \(y = \varphi(w) \) for some \(z, w \in G \). Now

\[
x \cdot y = f(z) \cdot f(w) = f(zw), \quad y \cdot x = f(w) \cdot f(z) = f(wz).
\]

Since \(G \) is abelian, we have \(zw = wz \), so \(f(zw) = f(wz) \) and \(xy = yx \). Therefore \(G' \) is abelian.

6.2. (25 points) Describe all homomorphisms \(\varphi : \mathbb{Z} \to \mathbb{Z} \). Determine which are injective, which are surjective and which are isomorphisms.

Solution: If \(\phi \) is an homomorphism then \(\varphi(0) = 0 \), and for all \(x, y \) \(\varphi(x + y) = \varphi(x) + \varphi(y) \). Suppose that \(\varphi(1) = n \), then \(\varphi(2) = \varphi(1 + 1) = \varphi(1) + \varphi(1) = 2n \). Similarly (one can prove this by induction), for all \(k > 0 \) \(\varphi(k) = kn \). Now \(\varphi(-k) + \varphi(k) = \varphi(0) = 0 \), so \(\varphi(-k) = -\varphi(k) = -kn \). Therefore for all \(x \) we have \(\phi(x) = nx \). Indeed, such function is a homomorphism.

It is injective if and only if \(\ker \varphi = \{0\} \), that is, if and only if \(n \neq 0 \). Since all elements in the image of \(\varphi \) are divisible by \(n \), it is surjective for \(n = \pm 1 \). As a result, \(\varphi \) is an isomorphism if and only if \(n = \pm 1 \), so \(\varphi(x) = x \) or \(\varphi(x) = -x \).

9.3. (25 points) Prove that every integer is congruent to the sum of its decimal digits modulo 9.

Solution: Consider a number \(a \) with digits \(a_1, \ldots, a_n \). We have

\[
a = a_1 \cdot 10^{n-1} + a_2 \cdot 10^{n-2} + \ldots + a_n = a_1 + \ldots + a_n \mod 9,
\]

since \(10^k = 1 \mod 9 \) for all \(k \). Indeed, \(10 = 1 \mod 9 \), so \(10^k = 1^k = 1 \mod 9 \).

9.4. (25 points) Solve the congruence \(2x = 5 \) modulo 9 and modulo 6.

Solution: If \(2x = 5 \mod 6 \) then \(2x = 5 + 6k \), but \(2x \) and \(6k \) are even while \(5 \) is an odd number. Therefore the equation \(2x = 5 \mod 6 \) has no solution.

To solve the equation \(2x = 5 \mod 9 \), consider the table

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x \mod 9)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

We see that the only solution is \(x = 7 \mod 9 \).