MAT 150A, Fall 2021 Practice problems for Midterm 2

Prove that every group with 4 elements has an element of order 2.
 Are the following matrices orthogonal? Do they preserve orientation? Describe the corresponding transformations geometrically.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

3. Let A be the counterclockwise rotation of the plane by 90°, let B be the reflection in the line $\{x = y\}$. Present the transformation A, B, AB, BA by matrices, describe AB and BA geometrically.

4. Are the following functions homomorphisms?

(a)
$$f : \mathbb{R}^* \to \mathbb{R}^*, f(x) = x + 1$$

(b) $f : \mathbb{R}^* \to \mathbb{R}^*, f(x) = 1/x$

5. Prove that the groups \mathbb{Z}_6 and S_3 are not isomorphic.

6. Is it possible to construct a surjective homomorphism from a group with 6 elements to a group with (a) 7 elements (b) 5 elements (c) 3 elements? If yes, construct such a homomorphism. If no, explain why this is not possible.
7. Is it possible to construct an injective homomorphism from a group with 6 elements to a group with (a) 3 elements (b) 9 elements (c) 12 elements? If yes, construct such a homomorphism. If no, explain why this is not possible.
8. Solve the system of equations

$$\begin{cases} x = 3 \mod 5\\ x = 4 \mod 6. \end{cases}$$

9. Is there an element of order 2 in (a) $(\mathbb{Z}_9, +)$? (b) (\mathbb{Z}_9^*, \times) (c) $(\mathbb{Z}_{99}, +)$? (d) $(\mathbb{Z}_{99}^*, \times)$?

10. If we label the diagonals in the square by 1 and 2, every isometry of the square would permute them. This gives a homomorphism from D_4 to S_2 . Describe its kernel and image.

11^{*}. Color alternate vertices of the regular 6-gon in black and white. Every element of D_6 either preserves all colors or changes all of them, this defines a homomorphism from D_6 to S_2 . Describe its kernel and image.