MAT 150A, Fall 2021
 Solutions to Homework 1

1. (10 points) Compute the products $f g$ and $g f$ for the permutations

$$
f=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 7 & 1 & 2 & 6 & 5
\end{array}\right), g=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}\right) .
$$

Solution: We have

$$
f g=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 6 & 2 & 1 & 7 & 3 & 4
\end{array}\right), g f=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 5 & 1 & 7 & 6 & 2 & 3
\end{array}\right)
$$

2. (10 points) Write the following permutations as products of disjoint cycles:
(1 2) (1 3) (1 4) (15), (123) (234)(345), (1234)(2345), (12)(23)(34)(45)(51).

Solution:

$$
\begin{gathered}
(12)(13)(14)(15)=(15432),(123)(234)(345)=(12)(45), \\
(1234)(2345)=(12453), \\
(12)(23)(34)(45)(51)=\left(\begin{array}{ll}
2 & 3
\end{array}\right) .
\end{gathered}
$$

3. (10 points) Present the following permutation as a product of disjoint cycles for all k :

$$
\left(\begin{array}{lll}
1 & 2
\end{array}\right)^{k}=\underbrace{\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \cdots\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)}_{k \text { times }} .
$$

Solution: We have $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{2}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ and $\left(\begin{array}{lll}1 & 2\end{array}\right)^{3}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{2}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)=e$. Therefore

$$
\left.\begin{array}{r}
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{4}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{3}\left(\begin{array}{lll}
1 & 3
\end{array}\right)
\end{array}\right)=e \cdot\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),
$$

In general, the powers of $\left(\begin{array}{ll}1 & 3\end{array}\right)^{k}$ will repeat with period 3 as follows:

$$
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{k}= \begin{cases}\left.\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{3}\right)^{m}=e^{m}=e, & k=3 m \\
\left(\begin{array}{llll}
1 & 2 & 3
\end{array}\right)^{3 m}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=e\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), & k=3 m+1 \\
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{3 m}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)^{2}=e\left(\begin{array}{llll}
1 & 2 & 3
\end{array}\right)^{2}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right), & k=3 m+2\end{cases}
$$

4. (10 points) Find the number of even and odd permutations in S_{n} for $n=1,2,3,4$.

Solution 1: We can just count all permutations directly. For $n=1$ there is only identity permutation and it is even. For $n=2$ we have $S_{2}=\{e,(12)\}$, and e is even while (12) is odd. For $n=3$ we have 3 even permutations $\left\{e,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$, and 3 odd permutations $\{(12),(13),(23)\}$. For $n=4$ we have 12 even permutations:

$$
\{e, 8 \text { cycles of length } 3,(12)(34),(13)(24),(14)(23)\}
$$

as well as 12 odd permutations: 6 transpositions and 6 cycles of length 4 .
Solution 2: Suppose $n \geq 2$. If f is an even permutation, define $T(f)=f \cdot(12)$. Since

$$
\operatorname{sgn}(T(f))=\operatorname{sgn}(f) \cdot \operatorname{sgn}(12)=-\operatorname{sgn}(f)
$$

the permutations f and $T(f)$ have opposite signs. Furthermore,

$$
T(T(f))=f \cdot\left(\begin{array}{ll}
1 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 2
\end{array}\right)=f
$$

so the function T on the set of permutations is inverse to itself and hence a bijection. Therefore T is a bijection from the set of even permutation to the set of odd permutations and these two sets have the same number of elements. Since the total number of permutations equals n !, both the number of even permutations and the number of odd ones are equal to $n!/ 2$.

