MAT 150A, Fall 2021
 Homework 2

1. (10 points) Let x, y, z and w be elements if a group G.
a) Solve for y given that $x y z^{-1} w=1$.
b) Suppose that $x y z=1$. Does it follow that $y z x=1$? Does it follow that $y x z=1$?

Solution: (a) (5 points) Let us multiply by x^{-1} on the left:

$$
x^{-1} x y z^{-1} w=x^{-1}, y z^{-1} w=x^{-1} .
$$

Now multiply by w^{-1} on the right:

$$
y z^{-1} w w^{-1}=y z^{-1}=x^{-1} w^{-1}
$$

and multiply by z on the right:

$$
y z^{-1} z=x^{-1} w^{-1} z
$$

Therefore $y=x^{-1} w^{-1} z$.
(b)(5 points) Let us solve the equation $x y z=1$ for z :

$$
x y z=1, z=y^{-1} x^{-1} x y z=y^{-1} x^{-1} .
$$

Now

$$
y z x=y \cdot y^{-1} x^{-1} \cdot x=1
$$

On the other hand, $y x z \neq 1$ if $x z \neq z x$. For example, pick $x=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $y=\left(\begin{array}{ll}2 & 3\end{array}\right)$ in the group S_{3}, then

$$
\begin{gathered}
z=y^{-1} x^{-1}=\left(\begin{array}{ll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \\
y z x=\left(\begin{array}{lll}
2 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)=e \text { while } y x z=\left(\begin{array}{lll}
2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \neq e
\end{gathered}
$$

2. (10 points) How many elements of order 2 does the symmetric group S_{4} contain?

Solution: The order of a permutations is the least common multiple of the lengths of disjoint cycles in it. If the order is equal to 2 , this means that all cycles have length 2. In S_{4}, we have 6 transpositions (cycles of length 2), and 3 products of to disjoint transpositions $((12)(34),(14)(23)$ and $(13)(24))$. Therefroe there are 9 permutations of order 2 in S_{4}.
3. (10 points) Find the order of the permutation

$$
f=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 10 & 7 & 6 & 2 & 5 & 9 & 4 & 1 & 8
\end{array}\right)
$$

Solution: We have

$$
f=\left(\begin{array}{ll}
1 & 3 \\
7
\end{array} 9\right)(2108465)
$$

The cycles in f have length 4 and 6 , so the order of f equals $\operatorname{LCM}(4,6)=12$.
4. (10 points) Determine if the following subset H is a subgroup of G :
a) $G=\left(\mathbb{R}^{*}, \cdot\right)$ and $H=\{-1,1\}$.
b) $G=(\mathbb{Z},+)$ and H is the set of positive integers.
c) $G=\left(\mathbb{R}^{*}, \cdot\right)$ and H is the set of positive real numbers.

Solution (a) (4 points) Yes. H contains 1 and is clearly closed under multiplication since $(-1)(-1)=1$. Also, $(-1)^{-1}=-1$, so H is closed under taking inverses. Therefore H is a subgroup of G (in fact, it is a cyclic subgroup generated by (-1)).
(b) (3 points) No: 1 is in H while (-1) is not in H, so H is not closed under taking inverses.
(c) (3 points) Yes: $1>0$, so H contains the identity. If $a, b>0$ then $a b>0$, so H is closed under multiplication. If $a>0$ then $a^{-1}=\frac{1}{a}>0$, so H is closed under taking inverses. Therefore H is a subgroup of G.

