MAT 150A, Fall 2021
 Solutions for homework 4

1. Solve the system of equations $x=3 \bmod 5, x=10 \bmod 11$.

Solution: Since $G C D(5,11)=1$, by Chinese Remainder Theoremthe solution is unique modulo 55 . To find this solution, we write all possible elements satisfying the second equation $x=10 \bmod 11$:

$x \bmod 55$	10	21	32	43	54
$x \bmod 5$	0	1	2	3	4

So the solution is $x=43 \bmod 55$.
2. Is it possible to construct an injective homomorphism (a) from \mathbb{Z}_{3} to \mathbb{Z}_{4} ? (b) From S_{3} to S_{4} ?
Solution: (a) No. Suppose $\varphi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{4}$ is a homomorphism, and $\varphi(1)=a$. Then $\varphi(2)=\varphi(1+1)=\varphi(1)+\varphi(1)=a+a=2 a$. Similarly $\varphi(3)=3 a$, but $3=0$ in \mathbb{Z}_{3}. So we get the equation $\varphi(0)=0=\varphi(3)=3 a$, so $3 a=0 \bmod 4$. Therefore $a=0 \bmod 4$, so any homomorophism from \mathbb{Z}_{3} to \mathbb{Z}_{4} sends every element to 0 and is not injective.
(b) Yes, we can extend any permutation f of three elements to a permutation of 4 elements by $f(4)=4$. Clearly, this is a homomorphism and it is injective.
3. A finite group G contains an element x of order 10 and also an element y of order 6. What can be said about the order of G ?

Solution: By Lagrange Theorem $|G|$ is divisible by 10 and by 6 , so it is divisible by $\operatorname{LCM}(10,6)=30$.
4. Let $\varphi: G_{1} \rightarrow G_{2}$ be a group homomorphism. Suppose that $\left|G_{1}\right|=18,\left|G_{2}\right|=15$ and that φ is not the trivial homomorphism. What is the order of the kernel?

Solution: By Counting formula we have $|\operatorname{Ker} \varphi| \cdot|\operatorname{Im} \varphi|=\left|G_{1}\right|=18$ and by Lagrange Theorem $|\operatorname{Im} \varphi|$ divides $\left|G_{2}\right|=15$. Therefore $|\operatorname{Im} \varphi|$ divides both 15 and 18, so it is either equal to 3 or to 1 . Since φ is not trivial, we get $|\operatorname{Im} \varphi|=3$, and by Counting formula $|\operatorname{Ker} \varphi|=6$.

