MAT 150A, Fall 2021

Solutions to homework 5

1. Are the following matrices orthogonal?
(a) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ (b) $\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$

Solution: (a) We have

$$
A^{T} A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \neq I
$$

so A is not orthogonal.
(b) We have

$$
A^{T} A=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
{ }^{1} & 0 \\
0 & 1
\end{array}\right)
$$

sp this matrix is orthogonal. In fact, this is the matrix of rotation by angle $\frac{\pi}{3}$:

$$
\left(\begin{array}{cc}
\cos \left(-\frac{\pi}{3}\right) & -\sin \left(-\frac{\pi}{3}\right) \\
\sin \left(-\frac{\pi}{3}\right) & \cos \left(-\frac{\pi}{3}\right)
\end{array}\right)
$$

2. Find all diagonal 3×3 matrices

$$
A=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

which are orthogonal.
Solution: We have

$$
A^{T} A=\left(\begin{array}{ccc}
a^{2} & 0 & 0 \\
0 & b^{2} & 0 \\
0 & 0 & c^{2}
\end{array}\right)
$$

so A is orthogonal if $a^{2}=b^{2}=c^{2}=1$, so $a= \pm 1, b= \pm 1, c= \pm 1$.
Recall that an orthogonal matrix A is called orientation reversing if $\operatorname{det}(A)=-1$ and orientation preserving if $\operatorname{det}(A)=1$.
3. Find all 2×2 orientation reversing matrices of finite order.

Solution: By classification theorem, any 2×2 orthogonal orientation reversing matrix is a reflection, all reflections have order 2 .
4. Find all 2×2 orientation preserving matrices of finite order.

Solution: By classification theorem, any 2×2 orthogonal orientationpreserving matrix A is a rotation by some angle φ. Its power A^{n} is a rotation by the angle $n \varphi$, so $A^{n}=I$ if and only if $n \varphi=2 \pi k$, or $\varphi=\frac{2 \pi k}{n}$ for some integer k.

