MAT 150C, Spring 2017 Practice problems for Midterm 2

This practice sheet contains more problems than the actual exam.

- 1. Find the minimal polynomial for $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} .
- 2. Find all irreducible polynomials over \mathbb{Z}_2 of degrees (a) 1 (b) 2 (c) 3 (d) 4.
- 3. Prove that the polynomial $x^3 3x + 1$ is irreducible over \mathbb{Q} .
- 4. Decompose the polynomial x^4+1 into irreducible factors over (a) \mathbb{Q} (b) $\mathbb{Q}[\sqrt{2}]$ (c) $\mathbb{Q}[i]$.
- 5. Compute $\frac{1}{1+\sqrt[3]{2}}$ in the field $\mathbb{Q}[\sqrt[3]{2}]$.
- 6. Let $\chi_n: SU(2) \to \mathbb{C}$ be the character of the (n+1) dimensional irreducible representation V_n .
- (a) Prove that $f(A) = \chi_1(A) \cdot \chi_3(A)$ can be written as a sum of χ_i with nonnegative integer coefficients.
- (b) Construct a representation of SU(2) with character f(A).
- 7*. Suppose that p > 2 is a prime number, consider the field $F = \mathbb{Z}_p$.
- (a) Consider the function $f: F \to F$, $f(x) = x^2$. Prove that every nonzero element has either 0 or 2 preimages.
- (b) Use (a) to compute the number of complete squares in ${\cal F}$
- (c) Use (b) to prove that for some $a \in F$ the polynomial $x^2 a$ is irreducible.
- (d) Prove that there exists a field with p^2 elements.