MAT 150C, Spring 2021
Solutions to homework 5

1. Solve the equation $x^2 + 3x + 1 = 0$ in the field \mathbb{Z}_{11}.

Solution: We can make the following table:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

We see that there are two roots $x = 2$ and $x = 6$ in \mathbb{Z}_{11}. Check:

$$(x - 2)(x - 6) = x^2 - 8x + 12 = x^2 + 3x + 1 \mod 11.$$

2. Solve the equation $(3 + 2\sqrt{2})x = 1$ in the field $\mathbb{Q}[\sqrt{2}]$.

Solution 1: Let $x = a + b\sqrt{2}$, then

$$(3 + 2\sqrt{2})(a + b\sqrt{2}) = (3a + 4b) + (3b + 2a)\sqrt{2},$$

We get $3a + 4b = 1$, $3b + 2a = 0$, so $a = -\frac{3}{2}b$, and

$$3a + 4b = -\frac{9}{2}b + 4b = -\frac{1}{2}b = 1, \ b = -2, \ a = 3.$$

Therefore $x = 3 - 2\sqrt{2}$.

Solution 2: Recall that $(a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2$, so $(3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 9 - 4 \cdot 2 = 1$. Therefore $x = \frac{1}{3+2\sqrt{2}} = 3 - 2\sqrt{2}$.

3. Decompose the polynomial $x^3 - 2$ into irreducible factors over the field \mathbb{Z}_5.

Solution: Let us find the roots of this polynomial:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>x^3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Therefore $x = 3$ is a single root of this polynomial in \mathbb{Z}_5. Let us divide it by $(x - 3)$:

$$x^3 - 2 = x^2(x - 3) + 3x^2 - 2 = x^2(x - 3) + 3x(x - 3) + 4x - 2 =$$

$$x^2(x - 3) + 3x(x - 3) + 4(x - 3) = (x^2 + 3x + 4)(x - 3).$$

The polynomial $x^2 + 3x + 4$ has no roots in \mathbb{Z}_5 (any such root would be a root of $x^3 - 2$), so it is irreducible.

4. Prove that the polynomial $x^4 - 2$ is irreducible over \mathbb{Q}.

Solution: Let us find the roots of this polynomial. We have $x^4 = 2, x^2 = \pm\sqrt{2}$, so there are four roots $\sqrt{2}, -\sqrt{2}, i\sqrt{2}, -i\sqrt{2}$ and

$$x^4 - 2 = (x - \sqrt{2})(x + \sqrt{2})(x - i\sqrt{2})(x + i\sqrt{2}).$$
Since all the roots are not rational, we cannot factor the polynomial as a product of degree 1 and degree 3 factors. Assume we can factor it as a product of degree 2 factors, then the roots should be grouped in pairs. One of the factors contains \((x - \sqrt{2})\) and we have the following cases:

1) \((x - \sqrt{2})(x + \sqrt{2}) = x^2 - \sqrt{2}\)
2) \((x - \sqrt{2})(x - i\sqrt{2}) = x^2 - (i + 1)\sqrt{2} + i\sqrt{2}\)
3) \((x - \sqrt{2})(x + i\sqrt{2}) = x^2 - (-i + 1)\sqrt{2} - i\sqrt{2}\)

In all these cases the coefficients of the degree 2 polynomial are not rational, contradiction. Therefore the original polynomial is irreducible.