1. (10 points) (a) (5 points) Draw the graph of

$$
f(x)= \begin{cases}3 & \text { for } x<3 \\ x & \text { for } x \geq 3\end{cases}
$$

Solution: The function is constant for $x<3$ and linear for $x \geq 3$. The limits from the left and right agree at $x=3$, and both are equal to 3 , so $f(x)$ is continuous everywhere.

(b) (5 points) Compute the integral $\int_{0}^{5} f(x) d x$ by interpreting it in terms of areas.

Solution: The area below the graph of $f(x)$ on the interval $[0,5]$ can be decomposed into a 3×3 square, a 2×3 rectangle, and a triangle with base and height 2 . Therefore the total area equals

$$
\int_{0}^{5} f(x) d x=3 \cdot 3+2 \cdot 3+\frac{1}{2} \cdot 2 \cdot 2=9+6+2=17 .
$$

2. (10 points) Compute the integral $\int_{2}^{10}(2 x-8) d x$ by interpreting it in terms of areas.

Solution: The graph of the function $f(x)=2 x-8$ has the following form:

It intersects the x-axis at $x=4$. The area between the graph and the x-axis on the interval $[2,10]$ consists of two triangles:

- The first has base $4-2=2$ and height $|f(2)|=4$, so it has area $\frac{1}{2} \cdot 2 \cdot 4=4$
- The second has base $10-4=6$ and height $|f(10)|=12$, so it has area $\frac{1}{2} \cdot 6 \cdot 12=36$.
Therefore

$$
\int_{2}^{10}(2 x-8) d x=36-4=32
$$

3. (10 points) (a) (5 points) Estimate the integral $\int_{-2}^{2} x^{2} d x$ using four intervals and midpoints.

Solution: The interval $[-2,2]$ can be divided into four equal intervals $[-2,-1],[-1,0],[0,1]$ and $[1,2]$. The corresponding midpoints are at $-1.5,-0.5,0.5$ and 1.5 , and the integral sum equals
$M_{4}=(f(-1.5)+f(-0.5)+f(0.5)+f(1.5)) \cdot 1=2.25+0.25+0.25+2.25=5$.
(b)(5 points) Use Fundamental Theorem of Calculus to compute $\int_{-2}^{2} x^{2} d x$ exactly.

Solution: We have

$$
\int_{-2}^{2} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-2} ^{2}=\frac{8}{3}-\frac{(-8)}{3}=\frac{16}{3}=5 \frac{1}{3} .
$$

