MAT 17B, Fall 2020
 Solutions to Homework 2

1. (10 points) Compute the integral $\int_{0}^{18} \sqrt{\frac{3}{z}} d z$.

Solution: We have

$$
\begin{gathered}
\int_{0}^{18} \sqrt{\frac{3}{z}} d z=\int_{0}^{18} \sqrt{3} \cdot z^{-\frac{1}{2}} d z=\left.\sqrt{3} \cdot \frac{z^{1 / 2}}{1 / 2}\right|_{0} ^{18}= \\
\left.2 \sqrt{3} \sqrt{z}\right|_{0} ^{18}=2 \sqrt{3} \sqrt{18}-0=2 \sqrt{54}=6 \sqrt{6}
\end{gathered}
$$

2. (10 points) Many fish grow in a way that is described by the von Bertalanffy growth equation. For a fish that starts life with a length of 1 cm and has a maximum length of 30 cm , this equation predicts that the growth rate is $29 e^{-a} \mathrm{~cm} /$ year, where a is the age of the fish. How long will the fish be after 5 years?

Solution 1: Let $L(t)$ be the length of fish in cm after t years, then $L(0)=1$ and $L^{\prime}(t)=29 e^{-t}$. By Net Change formula (or Fundamental Theorem of Calculus) we get

$$
\begin{gathered}
L(5)=L(0)+\int_{0}^{5} L^{\prime}(t) d t=1+\int_{0}^{5} 29 e^{-t} d t=1-\left.29 e^{-t}\right|_{0} ^{5}= \\
1-\left(29 e^{-5}-29 e^{0}\right)=1-29 e^{-5}+29=30-29 e^{-5} .
\end{gathered}
$$

Solution 2: As above, we have $L^{\prime}(t)=29 e^{-t}$, so $L(t)$ is an antiderivative of $29 e^{-t}$ and hence

$$
L(t)=-29 e^{-t}+C
$$

where C is some constant. We can determine this constant from the initial condition:

$$
L(0)=-29 e^{0}+C=C-29=1,
$$

so $C=30$. Therefore $L(t)=30-29 e^{-t}$ and $L(5)=30-29 e^{-5}$.
3. (10 points) Compute the integral $\int x^{2}\left(x^{3}+5\right)^{9} d x$ using u-substitution.

Solution: Let $u=x^{3}+5$, then $d u=3 x^{2} d x$ and $x^{2} d x=\frac{1}{3} d u$. Now

$$
\begin{gathered}
\int x^{2}\left(x^{3}+5\right)^{9} d x=\int u^{9} \cdot \frac{1}{3} d u=\frac{1}{3} \int u^{9} d u=\frac{1}{3} \cdot \frac{u^{10}}{10}+C= \\
\frac{u^{10}}{30}+C=\frac{\left(x^{3}+5\right)^{10}}{30}+C .
\end{gathered}
$$

