MAT 17B, Fall 2020
 Solutions to homework 4

1. (10 points) Find the area of the region bounded by the curves $y=x^{2}-2 x$ and $y=x+4$.

Solution: First, let us find the intersection points of these two curves:

$$
x^{2}-2 x=x+4 \Leftrightarrow x^{2}-3 x-4=0 \Leftrightarrow(x+1)(x-4)=0,
$$

so $x=-1$ or $x=4$. Next, we compute the integral:

$$
\begin{gathered}
\int_{-1}^{4}(f(x)-g(x)) d x=\int_{-1}^{4}\left(\left(x^{2}-2 x\right)-(x+4)\right) d x= \\
\int_{-1}^{4}\left(x^{2}-3 x-4\right) d x=\left[\frac{x^{3}}{3}-3 \frac{x^{2}}{2}-4 x\right]_{-1}^{4}= \\
{\left[\frac{64}{3}-\frac{3 \cdot 16}{2}-16\right]-\left[\frac{-1}{3}-\frac{3}{2}+4\right]=\frac{65}{3}-\frac{45}{2}-20=} \\
\frac{130}{6}-\frac{135}{6}-\frac{120}{6}=-\frac{125}{6} .
\end{gathered}
$$

Since this integral is negative, we conclude that $f(x)<g(x)$ on $[-1,4]$ and the area equals $\frac{125}{6}$.
2. (10 points) Find the volume of the solid obtained by rotating the region bounded by curves $y=x^{2}-2 x$ and $y=x+4$ about the x-axis.

Solution 1: We follow the computation from problem 1: the curves intersect at $x=-1$ and $x=4$, and $g(x)>f(x)$ on $[-1,4]$. Therefore the volume equals

$$
\begin{gathered}
\int_{-1}^{4} \pi\left(g^{2}(x)-f^{2}(x)\right) d x=\pi \int_{-1}^{4}\left((x+4)^{2}-\left(x^{2}-2 x\right)^{2}\right) d x= \\
\pi \int_{-1}^{4}\left(x^{2}+8 x+16-x^{4}+4 x^{3}-4 x^{2}\right) d x= \\
\pi \int_{-1}^{4}\left(-x^{4}+4 x^{3}-3 x^{2}+8 x+16\right) d x=\pi\left[-\frac{x^{5}}{5}+x^{4}-x^{3}+4 x^{2}+16 x\right]_{-1}^{4}= \\
\pi\left[-\frac{1024}{5}+256-64+64+64\right]-\pi\left[\frac{1}{5}+1+1+4-16\right]=\pi\left[-\frac{1025}{5}+330\right]= \\
\pi[-205+330]=125 \pi .
\end{gathered}
$$

Solution 2: Note that the part of the graph of $f(x)=x^{2}-2 x$ on the interval $[0,2]$ is below the x-axis, and we need to ignore it to avoid
double-counting the volume. Then the volume is given by the sum of three integrals:

$$
\pi \int_{-1}^{0}\left(g^{2}(x)-f^{2}(x)\right) d x+\pi \int_{0}^{2} g^{2} d x+\pi \int_{2}^{4}\left(g^{2}(x)-f^{2}(x)\right) d x
$$

As above, $g^{2}(x)-f^{2}(x)=-x^{4}+4 x^{3}-3 x^{2}+8 x+16$ and

$$
\int\left(g^{2}(x)-f^{2}(x)\right) d x=-\frac{x^{5}}{5}+x^{4}-x^{3}+4 x^{2}+16 x+C
$$

On the other hand,

$$
\int g^{2}(x) d x=\int(x+4)^{2} d x=\frac{1}{3}(x+4)^{3}+C
$$

Therefore the volume is given by the formula

$$
\begin{gathered}
\pi\left[-\frac{x^{5}}{5}+x^{4}-x^{3}+4 x^{2}+16 x\right]_{-1}^{0}+\pi\left[\frac{1}{3}(x+4)^{3}\right]_{0}^{2}+ \\
\pi\left[-\frac{x^{5}}{5}+x^{4}-x^{3}+4 x^{2}+16 x\right]_{2}^{4}= \\
0-\pi\left[\frac{1}{5}+1+1+4-16\right]+\frac{216}{3}-\frac{64}{3}+ \\
\pi\left[-\frac{1024}{5}+256-64+64+64\right]-\pi\left[-\frac{32}{5}+16-8+16+32\right]= \\
\pi\left[-\frac{993}{5}+274+\frac{152}{3}\right]=\pi\left[-\frac{2979}{15}+\frac{4110}{15}+\frac{760}{15}\right]=\frac{1891}{15} \pi
\end{gathered}
$$

Comment: Although the second solution is the only one mathematically correct, it is more complicated than the first one and this was not intended. The two answers differ by $\pi \int_{0}^{2}\left(x^{2}-2 x\right)^{2} d x=\frac{16}{15} \pi$ (check it!). Nevertheless, the first solution would receive a full credit if done correctly.
3. (10 points) Find the volume of the solid obtained by rotating the region bounded by curves $y=e^{x}, x=1, x=3$ and $y=0$ about the x-axis.

Solution: The volume equals

$$
\pi \int_{1}^{3}\left(e^{x}\right)^{2} d x=\pi \int_{1}^{3} e^{2 x} d x=\left.\frac{\pi}{2} e^{2 x}\right|_{1} ^{3}=\frac{\pi}{2}\left(e^{6}-e^{2}\right) .
$$

