MAT 17B, Fall 2020
 Homework 5

1. (10 points) Sketch the phase plot for the autonomous differential equation $y^{\prime}=y(3-y)\left(25-y^{2}\right)$. Find all equilibria and determine if each is locally stable or unstable.

Solution: We have $y(y-3)\left(25-y^{2}\right)=y(y-3)(5-y)(5+y)$. The equilibrium solutions correspond to $y^{\prime}=0$, so these are $y=-5, y=$ $0, y=3$ and $y=5$. The function $y(y-3)(5-y)(5+y)$ is positive for $y>5$ and changes the sign at each equilibrium, so the phase plot has the following shape:

For the phase plot, we see that $y=-5$ ad $y=3$ are stable, while $y=0$ and $y=5$ are unstable.
2. (10 points) Sketch the phase plot for the autonomous differential equation $y^{\prime}=5 y\left(2 e^{-y}-1\right)$. Find all equilibria and determine if each is locally stable or unstable.

Solution: The equilibrium solutions correspond to $y^{\prime}=0$, so either $y=0$ or $2 e^{-y}=0 \Leftrightarrow e^{y}=2 \Leftrightarrow y=\ln (2)$.

If $y>\ln (2)$ then $e^{y}>2$, so $e^{-y}<1 / 2$ and $2 e^{-y}-1<0$, so $y^{\prime}<0$.
If $0<y<\ln (2)$ then $e^{y}<2$, so $e^{-y}>1 / 2$ and $2 e^{-y}-1>0$, so $y^{\prime}>0$.

If $y<0$ then similarly $2 e^{-y}-1>0$, so $y^{\prime}<0$. The phase plot has the following shape:

From the phase plot, we see that $y=0$ is unstable and $y=\ln (2)$ is stable.
3. (10 points) The population size $N(t)$ satisfies the differential equation

$$
N^{\prime}=2\left(1-\frac{N}{1000}\right) N-h N,
$$

where h is a parameter called harvest rate. Assume $h \neq 2$.
a) Find all equilibria for this equation (the answer depends on h).
b) Determine if these equilibria are stable or unstable (the answer depends on h).
c) Find the limit $\lim _{t \rightarrow \infty} N(t)$ depending on the initial condition $N(0)>0$ (the answer depends on h).

Solution: First, we can factor N out of the right hand side:

$$
N^{\prime}=\left[2\left(1-\frac{N}{1000}\right)-h\right] N .
$$

The equilibria are given by the equations $N=0$, and
$2\left(1-\frac{N}{1000}\right)-h=0,2-\frac{N}{500}-h=0, \frac{N}{500}=2-h, N=1000-500 h$.

There are two cases depending on h : either $1000-500 h>0$ (equivalently, $h<2$), or $1000-500 h<0$ (equivalently, $h>2$). The corresponding phase plots are the following:

In Case $1 N=0$ is unstable while $N=1000-500 h$ is stable. In Case $2 N=0$ is stable while $N=1000-500 h$ is unstable. The graphs of solutions $N(t)$ have the following form:

In Case 1 we have $\lim _{t \rightarrow+\infty} N(t)=1000-500 h$ both if $N(0)>$ $1000-500 h$ and if $0<N(0)<1000-500 h$. In Case 2 we have $\lim _{t \rightarrow+\infty} N(t)=0$ for $N(0)>0$. We can sum up this as follows:
$\lim _{t \rightarrow+\infty} N(t)= \begin{cases}1000-500 h & \text { if } N(0)>0 \text { and } 1000-500 h>0 \text { (equivalently, } h<2 \text {), } \\ 0 & \text { if } N(0)>0 \text { and } 1000-500 h<0 \text { (equivalently, } h>2 \text {). }\end{cases}$

