MAT 17B, Fall 2020
 Solutiond to homework 6

1. (10 points) $y^{\prime}=x e^{-y}$

Solution: We have $\frac{d y}{d x}=x e^{-y}$, so

$$
\int e^{y} d y=\in x d x, e^{y}=\frac{x^{2}}{2}+C
$$

so

$$
y=\ln \left(\frac{x^{2}}{2}+C\right)
$$

2. (10 points) $y^{\prime}=y^{2}$.

Solution: We have $\frac{d y}{d x}=y^{2}$, so

$$
\int y^{-2} d y=\int d x,-y^{-1}=x+C
$$

so

$$
y=\frac{-1}{x+C} .
$$

3. (10 points) $y^{\prime}=\frac{\ln x}{x y}, y(1)=2$

Solution: We have $\frac{d y}{d x}=\frac{\ln x}{x y}$, so

$$
\int y d y=\int \frac{\ln x}{x} d x
$$

For the right hand side, let us make a u-substitution $u=\ln x$, then $d u=\frac{1}{x} d x$, so

$$
\int \frac{\ln x}{x} d x=\int u d u=\frac{u^{2}}{2}+C=\frac{\ln (x)^{2}}{2}+C
$$

Therefore

$$
\frac{y^{2}}{2}=\frac{\ln (x)^{2}}{2}+C, y^{2}=\ln (x)^{2}+2 C
$$

and the general solution has the form

$$
y(x)= \pm \sqrt{\ln (x)^{2}+2 C}
$$

Since $y(1)=2$ and $\ln (1)=0$, we get $2^{2}=4=0+2 C$, so $C=2$ and

$$
y(x)= \pm \sqrt{\ln (x)^{2}+4}
$$

