MAT 17B, Fall 2020
 Solutions to homework 7

1. (10 points) Consider the vectors $u=(1,-2,3)$ and $v=(7,-2,1)$. Find the lengths of vectors u, v and $u+v$.

Solution: We have $u+v=(1+7,-2-2,3+1)=(8,-4,4)$, so

$$
|u|=\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{14},|v|=\sqrt{7^{2}+(-2)^{2}+1^{2}}=\sqrt{54}
$$

and

$$
|u+v|=\sqrt{8^{2}+(-4)^{2}+(-4)^{2}}=\sqrt{96} .
$$

2. (10 points) Find the distance between the points $A=(1,-1)$ and $B=(7,7)$.

Solution: The vector $\overline{A B}$ has coordinates $(7-1,7-(-1))=(6,8)$, so its length equals

$$
|\overline{A B}|=\sqrt{6^{2}+8^{2}}=\sqrt{100}=10 .
$$

3. (10 points) Find the angle between the vectors $(1,1,0)$ and $(1,0,1)$.

Solution: Both vectors have length $\sqrt{1^{2}+1^{2}+0^{2}}=\sqrt{2}$, and their dot product equals $1 \cdot 1+1 \cdot 0+0 \cdot 1=1$. Therefore we have

$$
\cos (\alpha)=\frac{u \cdot v}{|u||v|}=\frac{1}{\sqrt{2} \sqrt{2}}=\frac{1}{2},
$$

and $\alpha=\arccos \left(\frac{1}{2}\right)=60^{\circ}$.

