MAT 17C, Fall 2017
 Practice problems for the final exam
 This practice sheet has more problems than the actual exam

1. Prove that the limit

$$
\lim _{(x, y) \rightarrow(0,)} \frac{x^{2}-5 y^{3}}{x^{2}+3 y^{3}}
$$

does not exist.
2. Compute the partial derivatives of the functions:
a) $x^{2}-y^{2}$
b) $\frac{\sin (x+y)}{\cos (x-y)}$
c) $\ln \left(x+e^{y}\right)$.
3. Find the gradient of the function $\ln \left(x+e^{y}\right)$ at the point $(1,0)$.
4. Use implicit differentiation to find the slope of the tangent line to the curve $x^{3}+y^{3}=28$ at the point $(1,3)$.
5. Find the directional derivative of the function $f(x, y)=e^{x} e^{y}-x y$ at the point $(1,2)$ in direction $u=(1,1)$.
6. Find all the critical points of a given function and determine their type (local minimum, local maximum, saddle):
a) $f(x, y)=x \ln (x)+y^{2}$
b) $f(x, y)=x^{2}+x y+y^{2}$
c) $f(x, y)=e^{-x^{2}-y^{2}}$.
7. Find the equation of the tangent plane to the graph of the function

$$
f(x, y)=x^{3}+y e^{x}
$$

at the point $(1,0)$.
8. Solve the system of linear differential equations (if the eigenvalues are real) and sketch the phase portrait:
a)

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x(t)}{y(t)}
$$

b)

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{cc}
0 & 5 \\
-1 & 2
\end{array}\right)\binom{x(t)}{y(t)}
$$

9. Solve the second order linear differential equations:
a) $x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=0$
b) $x^{\prime \prime}(t)=x(t)$
c) $x^{\prime \prime}(t)-x^{\prime}(t)=0, x(0)=1, x^{\prime}(0)=2$.
10. Solve the initial value problem:

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{ll}
0 & 3 \\
1 & 2
\end{array}\right)\binom{x(t)}{y(t)}, x(0)=2, y(0)=0
$$

11. Let $N(t)$ denote the population of rabbits and $P(t)$ denote the population of wolves. This predator-prey system is described by a system of differential equations:

$$
\frac{d N}{d t}=3 N-P N, \frac{d P}{d t}=-2 P+P N
$$

(a) Find all equilibrium points for this system; (b) Determine the type and stability of each equilibrium; (c) Sketch the phase portrait of the system.
12. Let $N_{1}(t)$ and $N_{2}(t)$ denote the populations of two species competing for limited resources. They are described by a system of differential equations:

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =N_{1}\left(1-\frac{N_{1}}{35}-3 \frac{N_{2}}{35}\right) \\
\frac{d N_{2}}{d t} & =3 N_{2}\left(1-\frac{N_{2}}{40}-4 \frac{N_{1}}{40}\right)
\end{aligned}
$$

(a) Find all equilibrium points for this system; (b) Determine the type and stability of each equilibrium; (c) Sketch the phase portrait of the system.
13. In a model for the forest growth, let $x_{1}(t)$ and $x_{2}(t)$ denote the areas occupied by the gaps and trees respectively. They are described by a compartment model:

$$
\frac{d x_{1}}{d t}=-0.2 x_{1}+0.1 x_{2}, \frac{d x_{2}}{d t}=0.2 x_{1}-0.1 x_{2}
$$

Find a general solution for this system.
14. Consider the system of differential equations:

$$
x^{\prime}(t)=y(t), y^{\prime}(t)=-x(t) .
$$

a) Show that

$$
x(t)=C_{1} \sin t+C_{2} \cos t, y(t)=C_{1} \cos t-C_{2} \sin t
$$

is a solution of this system for arbitrary constants C_{1}, C_{2}.
b) Let $F(t)=x(t)^{2}+y(t)^{2}$. Compute $F^{\prime}(t)$ in terms of $x(t)$ and $y(t)$.
c) Solve the system with the initial conditions $x(0)=3, y(0)=5$.

