MAT 17C, Fall 2017
 Answers to practice problems for the final exam

1. Prove that the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-5 y^{3}}{x^{2}+3 y^{3}}
$$

does not exist.
Answer: If $y=0$ then

$$
\lim _{x \rightarrow 0} \frac{x^{2}-5 y^{3}}{x^{2}+3 y^{3}}=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1
$$

If $x=0$ then

$$
\lim _{y \rightarrow 0} \frac{x^{2}-5 y^{3}}{x^{2}+3 y^{3}}=\lim _{y \rightarrow 0} \frac{-5 y^{3}}{3 y^{3}}=-5 / 3
$$

Since the limits along the axis are different, the limit does not exist.
2. Compute the partial derivatives of the functions:
a) $x^{2}-y^{2}$

Answer: $\frac{\partial f}{\partial x}=2 x, \frac{\partial f}{\partial y}=-2 y$.
b) $\frac{\sin (x+y)}{\cos (x-y)}$

Answer:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\cos (x+y) \cos (x-y)+\sin (x+y) \sin (x-y)}{\cos ^{2}(x-y)}=\frac{\cos (2 y)}{\cos ^{2}(x-y)} \\
& \frac{\partial f}{\partial y}=\frac{\cos (x+y) \cos (x-y)-\sin (x+y) \sin (x-y)}{\cos ^{2}(x-y)}=\frac{\cos (2 x)}{\cos ^{2}(x-y)}
\end{aligned}
$$

c) $\ln \left(x+e^{y}\right)$.

Answer: $\frac{\partial f}{\partial x}=\frac{1}{x+e^{y}}, \frac{\partial f}{\partial y}=\frac{e^{y}}{x+e^{y}}$.
3. Find the gradient of the function $\ln \left(x+e^{y}\right)$ at the point $(1,0)$.

Answer: (1/2, 1/2).
4. Use implicit differentiation to find the slope of the tangent line to the curve $x^{3}+y^{3}=28$ at the point $(1,3)$.

Answer:

$$
y^{\prime}(x)=-\frac{(\partial f / \partial x)}{(\partial f / \partial y)}=-\frac{3 x^{2}}{3 y^{2}}=-\frac{x^{2}}{y^{2}} .
$$

At $(x, y)=(1,3)$ we get $y^{\prime}(x)=-1 / 9$.
5. Find the directional derivative of the function $f(x, y)=e^{x} e^{y}-x y$ at the point $(1,2)$ in direction $u=(1,1)$.

Answer: We have $f_{x}=e^{x} e^{y}-y, f_{y}=e^{x} e^{y}-x$, so

$$
D_{(1,1)} f=f_{x}+f_{y}=e^{x} e^{y}-y+e^{x} e^{y}-x=e^{1} e^{2}-2-e^{1} e^{2}-1=2 e^{3}-3 .
$$

6. Find all the critical points of a given function and determine their type (local minimum, local maximum, saddle):
a) $f(x, y)=x \ln (x)+y^{2}$

Answer: $\left(e^{-1}, 0\right)$, local minimum.
b) $f(x, y)=x^{2}+x y+y^{2}$

Answer: (0,0), local minimum.
c) $f(x, y)=e^{-x^{2}-y^{2}}$.

Answer: (0,0), local maximum.
7. Find the equation of the tangent plane to the graph of the function

$$
f(x, y)=x^{3}+y e^{x}
$$

at the point $(1,0)$.
Answer: $f_{x}=3 x^{2}+y e^{x}, f_{y}=e^{x}$, so $f_{x}(1,0)=3, f_{y}(1,0)=e$, and $f(1,0)=1$, so the equation of the tangent plane has the form $z-1=$ $3(x-1)+e(y-0)$.
8. Solve the system of linear differential equations (if the eigenvalues are real) and sketch the phase portrait:
a)

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x(t)}{y(t)}
$$

Answer:

$$
C_{1} e^{-t}\binom{1}{-1}+C_{2} e^{3 t}\binom{1}{1}
$$

this is a saddle
b)

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{cc}
0 & 5 \\
-1 & 2
\end{array}\right)\binom{x(t)}{y(t)}
$$

Answer: The eigenvalues are equal to $\lambda_{1,2}=1 \pm 2 i$, so this is an unstable spiral.
9. Solve the second order linear differential equations:
a) $x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=0$

Answer: $x(t)=C_{1} e^{-t}+C_{2} e^{-2 t}$.
b) $x^{\prime \prime}(t)=x(t)$

Answer: $x(t)=C_{1} e^{-t}+C_{2} e^{t}$.
c) $x^{\prime \prime}(t)-x^{\prime}(t)=0, x(0)=1, x^{\prime}(0)=2$.

Answer: $x(t)=-1+2 e^{t}$.
10. Solve the initial value problem:

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{ll}
0 & 3 \\
1 & 2
\end{array}\right)\binom{x(t)}{y(t)}, x(0)=2, y(0)=0
$$

Answer:

$$
\frac{1}{2} e^{-t}\binom{3}{-1}+\frac{1}{2} e^{3 t}\binom{1}{1}
$$

11. Let $N(t)$ denote the population of rabbits and $P(t)$ denote the population of wolves. This predator-prey system is described by a system of differential equations:

$$
\frac{d N}{d t}=3 N-P N, \frac{d P}{d t}=-2 P+P N
$$

(a) Find all equilibrium points for this system; (b) Determine the type and stability of each equilibrium; (c) Sketch the phase portrait of the system.

Answer: $(0,0)$, saddle, unstable; $(2,3)$, center, stable.
12. Let $N_{1}(t)$ and $N_{2}(t)$ denote the populations of two species competing for limited resources. They are described by a system of differential equations:

$$
\frac{d N_{1}}{d t}=N_{1}\left(1-\frac{N_{1}}{35}-3 \frac{N_{2}}{35}\right)
$$

$$
\frac{d N_{2}}{d t}=3 N_{2}\left(1-\frac{N_{2}}{40}-4 \frac{N_{1}}{40}\right),
$$

(a) Find all equilibrium points for this system; (b) Determine the type and stability of each equilibrium; (c) Sketch the phase portrait of the system.

Answer: Four equilibrium points:
(a) $(0,0)$, source, unstable.
(b) $(35,0)$, sink, stable.
(c) $(0,40)$, sink, stable.
(d) $(85 / 11,100 / 11)$, saddle, unstable.
13. In a model for the forest growth, let $x_{1}(t)$ and $x_{2}(t)$ denote the areas occupied by the gaps and trees respectively. They are described by a compartment model:

$$
\frac{d x_{1}}{d t}=-0.2 x_{1}+0.1 x_{2}, \frac{d x_{2}}{d t}=0.2 x_{1}-0.1 x_{2}
$$

Find a general solution for this system.
Answer

$$
C_{1}\binom{1}{2}+C_{2} e^{-0.3 t}\binom{1}{-1} .
$$

14. Consider the system of differential equations:

$$
x^{\prime}(t)=y(t), y^{\prime}(t)=-x(t) .
$$

a) Show that

$$
x(t)=C_{1} \sin t+C_{2} \cos t, y(t)=C_{1} \cos t-C_{2} \sin t
$$

is a solution of this system for arbitrary constants C_{1}, C_{2}.
Solution: Indeed, $x^{\prime}(t)=C_{1} \cos t-C_{2} \sin t=y(t), y^{\prime}(t)=-C_{1} \sin t-$ $C_{2} \cos t=-x(t)$.
b) Let $F(t)=x(t)^{2}+y(t)^{2}$. Compute $F^{\prime}(t)$ in terms of $x(t)$ and $y(t)$.

Solution: By the Chain Rule, we have $F^{\prime}(t)=2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)=$ $2 x(t) y(t)+2 y(t)(-x(t))=0$.
c) Solve the system with the initial conditions $x(0)=3, y(0)=5$.

Solution: We have $x(0)=C_{2}=3, y(0)=C_{1}=5$, so

$$
x(t)=5 \sin t+3 \cos t, y(t)=5 \cos t-3 \sin t .
$$

