MAT 17C, Fall 2017
 Solutions to Homework 1

Chapter 10.1: 21. (20 points) Match the function $f(x, y)=y^{2}-x^{2}$ to its graph.

Solution: At $y=0$ we get $f(x, y)=-x^{2}$, this is a parabola extending downward. At $x=0$ we get $f(x, y)=y^{2}$, this is a parabola extending upward. The only graph containing two such oppositely oriented parabolas is Figure 10.24.

22. (20 points) Match the function $f(x, y)=4-x^{2}$ to its graph.

Solution: The function does not depend on y, so its value is unchanged as one travels in the y-direction. The only graph with this property is in Figure 10.21.

24.(20 points) Sketch the temperature profiles in March and January using Figure 10.25.

Solution:

Chapter 10.2: 16. (20 points) Show that the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}-y^{2}}{x^{2}+y^{2}}
$$

does not exist by computing the limit along the positive x-axis and the positive y-axis.

Solution: On the positive x-axis one has $y=0$, so the limit equals

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}-0^{2}}{x^{2}+0^{2}}=\lim _{x \rightarrow 0} 3=3
$$

On the positive y-axis one has $x=0$, so the limit equals

$$
\lim _{x \rightarrow 0} \frac{3 \cdot 0^{2}-y^{2}}{0^{2}+y^{2}}=\lim _{x \rightarrow 0}(-1)=-1
$$

Since the two limits along the axes are different, the limit does not exist.
Problem A: (20 points) Draw the contour plot for the function $f(x, y)=$ $\sqrt{x^{2}+y^{2}}$ by sketching the level curves $f(x, y)=c$ for $c=-3,-2,-1,0,1,2,3$.

Solution: Since $\sqrt{x^{2}+y^{2}} \geq 0$ for all x and y, no points satisfy $f(x, y)=$ c for $c=-3,-2,-1$. For $c>0$, we have

$$
\sqrt{x^{2}+y^{2}}=c \Leftrightarrow x^{2}+y^{2}=c^{2} .
$$

This is the equation of a circle with center at the origin and radius c, so we get concentric circles of radius $0,1,2,3$.

