MAT 17C, Fall 2017
 Solutions to Homework 2

Section 10.3: Find the partial derivatives:
12. (20 points) $f(x, y)=e^{-y^{2}} \cos \left(x^{2}-y^{2}\right)$

Solution: By the Product Rule and the Chain Rule we have

$$
\begin{gathered}
\frac{\partial f}{\partial x}=0 \cdot \cos \left(x^{2}-y^{2}\right)+e^{-y^{2}} \cdot\left(-\sin \left(x^{2}-y^{2}\right)\right) \cdot(2 x)=-2 x e^{-y^{2}} \sin \left(x^{2}-y^{2}\right) \\
\frac{\partial f}{\partial y}=e^{-y^{2}} \cdot(-2 y) \cdot \cos \left(x^{2}-y^{2}\right)+e^{-y^{2}} \cdot\left(-\sin \left(x^{2}-y^{2}\right)\right) \cdot(-2 y)= \\
-2 y e^{-y^{2}} \cos \left(x^{2}-y^{2}\right)+2 y e^{-y^{2}} \sin \left(x^{2}-y^{2}\right)
\end{gathered}
$$

14. (20 points) $f(x, y)=\ln \left(3 x^{2}-x y\right)$.

Solution: By the Chain Rule we have

$$
\frac{\partial f}{\partial x}=\frac{1}{3 x^{2}-x y} \cdot(6 x-y), \frac{\partial f}{\partial y}=\frac{1}{3 x^{2}-x y} \cdot(-x)
$$

30. (20 points) The prey density $H(t)$ and the predator density $P(t)$ are related by the equation

$$
\frac{1}{H} \frac{d H}{d t}=r\left(1-\frac{H}{k}\right)-a P
$$

where a, r, k are some positive constants. Investigate how an increase in (a) prey density and (b) predator density affects the per capita growth rate of this prey species.
Solution: The growth rate of prey species equals $\frac{d H}{d t}$, so per capita growth rate equals

$$
\frac{1}{H} \frac{d H}{d t}=r\left(1-\frac{H}{k}\right)-a P=r-r H / k-a P .
$$

Let us denote the right hand side by $f(H, P)$, then

$$
\frac{\partial f}{\partial H}=-r / k, \frac{\partial f}{\partial H}=-a
$$

Therefore the increases in prey density or in predator density both decrease the per capita growth rate $f(H, P)$.

Section 10.4: 8. (20 points) Find the tangent plane to the graph of $f(x, y)=$ $e^{x} \cos y$ at the point $(0,0,1)$.

Solution: We have

$$
\begin{gathered}
\frac{\partial f}{\partial x}=e^{x} \cos y, \frac{\partial f}{\partial x}(0,0)=1 \cdot 1=1 \\
\frac{\partial f}{\partial y}=e^{x}(-\sin y), \frac{\partial f}{\partial y}(0,0)=1 \cdot 0=0
\end{gathered}
$$

so the equation of the tangent plane has the form

$$
\begin{aligned}
& z-z_{0}=\frac{\partial f}{\partial x}(0,0)(x-0)+\frac{\partial f}{\partial y}(0,0)(y-0) \\
& z-1=1(x-0)+0(y-0)=x, z=x+1
\end{aligned}
$$

Answer: $z=x+1$.
26. (20 points) Find the linear approximation of $f(x, y)=\sin (x+2 y)$ at $(0,0)$, and use it to approximate $f(0.1,0.2)$. Using a calculator, compare the approximation with the exact value of $f(0.1,0.2)$.
Solution: We have

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\cos (x+2 y) \cdot 1, \frac{\partial f}{\partial x}(0,0)=1 \cdot 1=1 \\
& \frac{\partial f}{\partial y}=\cos (x+2 y) \cdot 2, \frac{\partial f}{\partial y}(0,0)=1 \cdot 2=2
\end{aligned}
$$

so the linear approximation has the form
$f(x, y) \approx z_{0}+\frac{\partial f}{\partial x}(0,0)(x-0)+\frac{\partial f}{\partial y}(0,0)(y-0)=0+1(x-0)+2(y-0)=x+2 y$.
At $(x, y)=(-0.1,0.2)$ we have $f(x, y) \approx-0.1+2 \cdot 0.2=0.3$. The actual value of $f(-0.1,0.2)$ equals

$$
f(-0.1,0.2)=\sin (-0.1+2 \cdot 0.2)=\sin (0.3) \approx 0.2955
$$

