MAT 17C, Fall 2017
 Solutions to homework 3

Chapter 10.5: 2. (20 points) Let $f(x, y)=e^{x} \sin y$ with $x(t)=t$ and $y(t)=t^{3}$. Find the derivative of $w=f(x, y)$ with respect to t when $t=1$.

Solution: We have

$$
\frac{\partial f}{\partial x}=e^{x} \sin y \frac{\partial f}{\partial y}=e^{x} \cos y, x^{\prime}(t)=1, y^{\prime}(t)=3 t^{2}
$$

so

$$
w^{\prime}(t)=\frac{\partial f}{\partial x} x^{\prime}(t)+\frac{\partial f}{\partial y} y^{\prime}(t)=e^{x} \sin y \cdot 1+e^{x} \cos y \cdot 3 t^{2}=e^{t} \sin \left(t^{3}\right)+3 e^{t} \cos \left(t^{3}\right) \cdot t^{2}
$$

At $t=1$ we get

$$
w^{\prime}(1)=e \sin (1)+3 e \cos (1)
$$

12. (20 points). Find $\frac{d y}{d x}$ if $\cos \left(x^{2}+y^{2}\right)=\sin \left(x^{2} y^{2}\right)$.

Solution: We have

$$
f(x, y)=\cos \left(x^{2}+y^{2}\right)-\sin \left(x^{2} y^{2}\right)=0
$$

by Chain Rule

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=-2 x \sin \left(x^{2}+y^{2}\right)-2 x \cos \left(x^{2}-y^{2}\right) \\
& \frac{\partial f}{\partial y}=-2 y \sin \left(x^{2}+y^{2}\right)+2 y \cos \left(x^{2}-y^{2}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
y^{\prime}(x)=-\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}=-\frac{-2 x \sin \left(x^{2}+y^{2}\right)-2 x \cos \left(x^{2}-y^{2}\right)}{-2 y \sin \left(x^{2}+y^{2}\right)+2 y \cos \left(x^{2}-y^{2}\right)}= \\
\frac{x \sin \left(x^{2}+y^{2}\right)+x \cos \left(x^{2}-y^{2}\right)}{-y \sin \left(x^{2}+y^{2}\right)+y \cos \left(x^{2}-y^{2}\right)} .
\end{gathered}
$$

30. (20 points) Find the directional derivative of $f(x, y)=y e^{x^{2}}$ at $(0,2)$ in direction $(4,-1)$.

Solution: We have

$$
\frac{\partial f}{\partial x}=2 x y e^{x^{2}}, \frac{\partial f}{\partial y}=e^{x^{2}}
$$

so

$$
\frac{\partial f}{\partial x}(0,2)=0, \frac{\partial f}{\partial y}(0,2)=1
$$

so grad $f(0,2)=(0,1)$. The directional derivative equals

$$
(\operatorname{grad} f) \cdot(4,-1)=(0,1) \cdot(4,-1)=-1
$$

43. (20 points) Chemotaxis is the chemically directed movement of organisms up a concentration gradient - that is, in the direction in which the concentration increases most rapidly. The slime mold Dictyostelium discoideum exhibits this phenomenon. Single-celled amoebas of this species move up the concentration gradient of a chemical called cyclic adenosine monophosphate (AMP). Suppose the concentration of cyclic AMP at the point (x, y) in the $x y$ plane is given by

$$
f(x, y)=\frac{4}{|x|+|y|+1}
$$

If you place an amoeba at the point $(3,1)$ in the $x y$ plane, determine in which direction the amoeba will move if its movement is directed by chemotaxis.

Solution: The amoeba will move in the direction of the gradient of $f(x, y)$. Near $(3,1)$ one has $|x|=x,|y|=y$, so

$$
f(x, y)=\frac{4}{x+y+1}=4(x+y+1)^{-1}, \frac{\partial f}{\partial x}=-4(x+y+1)^{-2}=\frac{\partial f}{\partial y}
$$

Therefore

$$
\operatorname{grad} f(3,1)=(-4 / 25,-4 / 25)
$$

44. (20 points) Suppose an organism moves down a sloped surface along the steepest line of descent. If the surface is given by $f(x, y)=x^{2} y^{2}$, find the direction in which the organism will move at the point $(2,3)$.

Solution: We have

$$
\frac{\partial f}{\partial x}=2 x, \frac{\partial f}{\partial y}=-2 y
$$

so

$$
\operatorname{grad} f(2,3)=(4,-6)
$$

The steepest line of descent is directed oppositely to the gradient, so the organism moves in direction

$$
-\operatorname{grad} f(2,3)=(-4,6)
$$

