MAT 17C, Fall 2017 Solutions to homework 4

Chapter 9.3: Find the eigenvalues λ_{1}, λ_{2} and the eigenvectors v_{1}, v_{2}. Draw the vectors $v_{1}, v_{2}, A v_{1}, A v_{2}$.
50. (25 points) $A=\left(\begin{array}{cc}0 & 0 \\ 1 & -3\end{array}\right)$.

Solution: The characteristic equation has the form:

$$
0=\operatorname{det}\left(\begin{array}{cc}
0-\lambda & 0 \\
1 & -3-\lambda
\end{array}\right)=-\lambda(-3-\lambda),
$$

so the eigenvalues are $\lambda_{1}=0$ and $\lambda_{2}=-3$. The coordinates of the first eigenvector satisfy

$$
0 x+0 y=0, x-3 y=0
$$

so we can pick $v_{1}=(3,1)$. The coordinates of the second eigenvector satisfy

$$
\left(\begin{array}{cc}
0-(-3) & 0 \\
1 & -3-(-3)
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

so

$$
3 x+0 y=0, x+0 y=0,
$$

so we can pick $v_{2}=(0,1)$. Finally, $A v_{1}=0 v_{1}=0$ and $A v_{2}=-3 v_{2}=(0,-3)$.

54. (25 points) $A=\left(\begin{array}{cc}3 & 6 \\ -1 & -4\end{array}\right)$.

Solution: The characteristic equation has the form:

$$
\begin{gathered}
0=\operatorname{det}\left(\begin{array}{cc}
3-\lambda & 6 \\
-1 & -4-\lambda
\end{array}\right)=(3-\lambda)(-4-\lambda)+6= \\
-12-3 \lambda+4 \lambda+\lambda^{2}+6=\lambda^{2}+\lambda-6=(\lambda-2)(\lambda+3) .
\end{gathered}
$$

so the eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=-3$. The coordinates of the first eigenvector satisfy

$$
\left(\begin{array}{cc}
3-2 & 6 \\
-1 & -4-2
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

so

$$
x+6 y=0,-x-6 y=0,
$$

so we can pick $v_{1}=(6,-1)$ The coordinates of the second eigenvector satisfy

$$
\left(\begin{array}{cc}
3-(-3) & 6 \\
-1 & -4-(-3)
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

so

$$
6 x+6 y=0,-x-y=0,
$$

so we can pick $v_{2}=(1,-1)$. Finally, $A v_{1}=2 v_{1}=(12,-2)$ and $A v_{2}=-3 v_{2}=(-3,3)$.

60. (25 points) Find the eigenvalues for the matrix $A=\left(\begin{array}{cc}-1 & 4 \\ 0 & -2\end{array}\right)$.

Solution: We have

$$
0=\operatorname{det}\left(\begin{array}{cc}
-1-\lambda & 4 \\
0 & -2-\lambda
\end{array}\right)=(-1-\lambda)(-2-\lambda)
$$

so the eigenvalues are equal to $\lambda_{1}=-1, \lambda_{2}=-2$.
Chapter 10.6: 4. (25 points) Find the critical points for the function $f(x, y)=$ $x y-2 y^{2}$ and determine their type.

Solution: We have $f_{x}=y, f_{y}=x-4 y$, so the critical points are given by the equation

$$
y=x-4 y=0 \Rightarrow x=y=0
$$

Therefore there is only one critical point $(0,0)$. The Hessian of $f(x, y)$ has the form

$$
H=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & -4
\end{array}\right)
$$

The characteristic equation has the form

$$
0=\operatorname{det}\left(\begin{array}{cc}
0-\lambda & 1 \\
1 & -4-\lambda
\end{array}\right)=-\lambda(-4-\lambda)-1=\lambda^{2}+4 \lambda-1 .
$$

By quadratic formula, we have

$$
\lambda_{1,2}=\frac{-4 \pm \sqrt{4^{2}+4 \cdot 1}}{2}=\frac{-4 \pm \sqrt{20}}{2}
$$

Since $\lambda_{1}=\frac{-4+\sqrt{20}}{2}>0$ and $\lambda_{2}=\frac{-4-\sqrt{20}}{2}<0$, this is a saddle.

