## MAT 17C, Fall 2017 <br> Solutions to homework 6

Section 11.3 Analyze the stability of the equilibrium point $(0,0)$ :
2. (25 points)

$$
\frac{d x_{1}}{d t}=-x_{1}-x_{2}+x_{1}^{2}, \frac{d x_{2}}{d t}=x_{2}-x_{1}^{2} .
$$

Solution: The Jacobi matrix has the form:

$$
J=\left(\begin{array}{cc}
-1+2 x_{1} & -1 \\
-2 x_{1} & 1
\end{array}\right)
$$

so

$$
J(0,0)=\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right)
$$

This is a triangular matrix with eigenvalues $1,-1$, so this is a saddle point and the equilibrium is unstable.
4. (25 points)

$$
\frac{d x_{1}}{d t}=3 x_{1} x_{2}-x_{1}+x_{2}, \frac{d x_{2}}{d t}=x_{2}^{2}-x_{1} .
$$

Solution: The Jacobi matrix has the form:

$$
J=\left(\begin{array}{cc}
3 x_{2}-1 & 3 x_{1}+1 \\
-1 & 2 x_{2}
\end{array}\right)
$$

so

$$
J(0,0)=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right)
$$

The characteristic equation has the form:

$$
\begin{gathered}
(-1-\lambda)(-\lambda)+1=\lambda^{2}+\lambda+1=0, \\
\lambda_{1,2}=\frac{-1 \pm \sqrt{3} i}{2} .
\end{gathered}
$$

This is a stable spiral, so the equilibrium point is stable.
6. (25 points)

$$
\frac{d x_{1}}{d t}=-2 \sin x_{1}, \frac{d x_{2}}{d t}=-x_{2} e^{x_{1}}
$$

Solution: The Jacobi matrix has the form:

$$
J=\left(\begin{array}{cc}
-2 \cos x_{1} & 0 \\
-x_{2} e^{x_{1}} & -e^{x_{1}}
\end{array}\right),
$$

so

$$
J(0,0)=\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right) .
$$

The eigenvalues are equal to -2 and -1 , so this is a sink and the equilibrium pojnt is stable.
11. (25 points) Find all equilibria and analyze their stability:

$$
\frac{d x_{1}}{d t}=x_{1}-x_{2}, \frac{d x_{2}}{d t}=x_{1} x_{2}-x_{2} .
$$

Solution: The equilibrium points are defined by the equations:

$$
x_{1}-x_{2}=0, x_{1} x_{2}-x_{2}=x_{2}\left(x_{1}-1\right)=0 .
$$

From the first equation, $x_{1}=x_{2}$, and from the second $x_{1}=1$ or $x_{2}=0$. Therefore, there are two equilibrium points $(0,0)$ and $(1,1)$.

The Jacobi matrix has the form:

$$
J=\left(\begin{array}{cc}
1 & -1 \\
x_{2} & x_{1}-1
\end{array}\right),
$$

so

$$
J(0,0)=\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right)
$$

This is a triangular matrix with eigenvalues 1 and -1 , so the equilibrium is a saddle point and hence unstable. Furthermore,

$$
J(1,1)=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)
$$

The characteristic equation has the form:

$$
\begin{gathered}
(1-\lambda)(-\lambda)+1=\lambda^{2}-\lambda+1=0, \\
\lambda_{1,2}=\frac{1 \pm \sqrt{3} i}{2}
\end{gathered}
$$

This is an unstable spiral, so the equilibrium point is unstable.

