MAT 17C, Fall 2017 Solutions to homework 7

Chapter 11.3: 14. (25 points) Assume that $a>0$. Find all point equilibria of

$$
\frac{d x_{1}}{d t}=1-a x_{1} x_{2}, \frac{d x_{2}}{d t}=a x_{1} x_{2}-x_{2}
$$

and characterize their stability.
Solution: To find the equilibrium points, we write

$$
1-a x_{1} x_{2}=a x_{1} x_{2}-x_{2}=0
$$

so

$$
1=a x_{1} x_{2}=x_{2} .
$$

Therefore $x_{2}=1$ and from the first equation $x_{1}=1 / a$, so there is only one equilibrium point ($1 / a, 1$).

The general Jacobian matrix of the system has the form:

$$
J=\left(\begin{array}{cc}
-a x_{2} & -a x_{1} \\
a x_{2} & a x_{1}-1
\end{array}\right),
$$

so

$$
J(1 / a, 1)=\left(\begin{array}{cc}
-a & -1 \\
a & 0
\end{array}\right) .
$$

The characteristic equation has the form

$$
(-a-\lambda)(-\lambda)+a=\lambda^{2}+a \lambda+a=0 .
$$

By using the quadratic formula, we get

$$
\lambda_{1,2}=\frac{-a \pm \sqrt{a^{2}-4 a}}{2}
$$

If $a>4$ then $a^{2}-4 a>0$, and both eigenvalues are real and negative, so this equilibrium point is a sink. If $0<a<4$ then $a^{2}-4 a<0$, and both eigenvalues are complex with negative real part, so this equilibrium point is a stable spiral. In both cases, the equilibrium is stable.

Chapter 11.4: 2. (25 points) Suppose the densities of two species evolve in accordance with the LotkaVolterra model of interspecific competition. Assume that species 1 has intrinsic rate of growth $r_{1}=4$ and carrying capacity $K_{1}=17$ and that species 2 has intrinsic rate of growth $r_{2}=1.5$ and carrying capacity $K_{2}=32$. Furthermore, assume that 15 individuals of species 2 have the same effect on species 1 as 7 individuals of species 1 have on themselves and that 5 individuals of species 1 have the same effect on species 2 as 7 individuals of species 2 have on themselves. Find a system of differential equations that describes this situation.

Solution:

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =4 N_{1}\left(1-\frac{N_{1}}{17}-\frac{7}{15} \cdot \frac{N_{2}}{17}\right), \\
\frac{d N_{2}}{d t} & =1.5 N_{2}\left(1-\frac{N_{2}}{32}-\frac{7}{5} \cdot \frac{N_{1}}{17}\right) .
\end{aligned}
$$

10. (25 points) Find and analyze all equilibria of the following system:

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=N_{1}\left(1-\frac{N_{1}}{25}-0.1 \cdot \frac{N_{2}}{25}\right) \\
& \frac{d N_{2}}{d t}=N_{2}\left(1-\frac{N_{2}}{28}-1.2 \cdot \frac{N_{1}}{28}\right)
\end{aligned}
$$

Solution: To find all equilibrium points, we need to set the right hand sides of the equations equal to 0 . There are 4 possible cases:
a) $N_{1}=N_{2}=0$, the equilibrium point is $(0,0)$.
b) $N_{1}=0,1-\frac{N_{2}}{28}-1.2 \cdot \frac{N_{1}}{28}=0$. It is easy to see from the second equation that in this case $N_{2}=28$, so the equilibrium point is $(0,28)$.
c) $1-\frac{N_{1}}{25}-0.1 \cdot \frac{N_{2}}{25}=0, N_{2}=0$. It is easy to see from the first equation that in this case $N_{1}=25$, so the equilibrium point is $(25,0)$.
d) $1-\frac{N_{1}}{25}-0.1 \cdot \frac{N_{2}}{25}=0,1-\frac{N_{2}}{28}-1.2 \cdot \frac{N_{1}}{28}=0$. From the first equation, we can write

$$
\frac{N_{1}}{25}=1-0.1 \frac{N_{2}}{25} \Rightarrow N_{1}=25-0.1 N_{2}
$$

We can plug in this into the second equation:

$$
\begin{gathered}
1-\frac{N_{2}}{28}-1.2 \cdot \frac{N_{1}}{28}=1-\frac{N_{2}}{28}-\frac{1.2}{28}\left(25-0.1 N_{2}\right)=0, \\
1-\frac{1.2 \cdot 25}{28}=N_{2}\left(\frac{1}{28}-\frac{1.2 \cdot 0.1}{28}\right), \\
1-\frac{30}{28}=N_{2} \cdot \frac{1-0.12}{28},-\frac{2}{28}=N_{2} \cdot \frac{0.88}{28},
\end{gathered}
$$

so $N_{2}=-2 / 0.88<0$. Since the negative population is impossible, we do not consider this equilibrium.

Next, we need to compute the Jacobi matrix:

$$
J=\left(\begin{array}{cc}
1-2 \frac{N_{1}}{25}-0.1 \frac{N_{2}}{25} & -0.1 \frac{N_{1}}{25} \\
-1.2 \frac{N_{2}}{28} & 1-2 \frac{N_{2}}{28}-1.2 \frac{N_{1}}{28}
\end{array}\right) .
$$

If we evaluate it at the equilibrium points, we get the following:
a)

$$
J(0,0)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

this is an unstable node (source).
b)

$$
J(0,28)=\left(\begin{array}{cc}
1-0.1 \frac{28}{25} & 0 \\
-1.2 & 1-2 \frac{28}{28}
\end{array}\right)=\left(\begin{array}{cc}
1-0.1 \frac{28}{25} & 0 \\
-1.2 & -1
\end{array}\right)
$$

This is a triangular matrix with eigenvalues $1-0.1 \frac{28}{25}>0$ and $-1<0$, so this is a saddle point.
c)

$$
J(25,0)=\left(\begin{array}{cc}
1-2 \frac{25}{25} & -0.1 \\
0 & 1-1.2 \frac{25}{28}
\end{array}\right)=\left(\begin{array}{cc}
-1 & -0.1 \\
0 & -\frac{2}{28}
\end{array}\right) .
$$

This is a triangular matrix with eigenvalues $-\frac{2}{28}>0$ and $-1<0$, so this is stable node (sink).
16. (25 points) Find the equilibrium points and study their stability for the system

$$
\frac{d N}{d t}=5 N-P N, \frac{d P}{d t}=P N-P
$$

Solution: To find all equilibrium points, we need to set the right hand sides of the equations equal to 0 . We have:

$$
5 N-P N=N(5-P)=0, P N-P=P(N-1)=0
$$

If $N=0$ then $P=0$, and if $P=5$ then $N=1$. Therefore the system has two equilibrium points $(0,0)$ and $(1,5)$.

The Jacobi matrix has the form:

$$
J=\left(\begin{array}{cc}
5-P & -N \\
P & N-1
\end{array}\right)
$$

Now

$$
J(0,0)=\left(\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right)
$$

so $(0,0)$ is a saddle point. At the point $(1,5)$ we have:

$$
J(1,5)=\left(\begin{array}{cc}
0 & -1 \\
5 & 0
\end{array}\right)
$$

the characteristic equation has the form:

$$
\lambda^{2}+5=0, \lambda= \pm \sqrt{5} i
$$

The eigenvalues are complex with no real part, so this is a center.

