MAT 21A, practice problems for Midterm 2

1. Find the derivatives of the following functions:

a)
$$f(x) = \frac{\sin x}{\ln x}$$

b)
$$f(x) = xe^{\cos x}$$

c)
$$f(x) = e^{\ln(2+x) - \ln(1+x)}$$
.

$$d)^* f(x) = (\sin x)^{\cos x}$$

e)
$$\sqrt{\frac{x-1}{x+1}}$$
.

2. Find the derivative of y(x) using implicit differentiation, if

a)
$$3x^2 + 2y^2 = 10$$

$$b) \cos(x) + \cos(y) = 15$$

c)
$$\frac{x}{y} - \frac{y}{x} = 1$$

- 3. Find the equation of the tangent line to the graph of $f(x) = x^4 e^{-x}$ at a point $(1, e^{-1})$.
- 4. Find the maximal and minimal values of a given function on a given interval:

a)
$$f(x) = x + \sin x$$
, [0, 4]

b)
$$f(x) = x^3 - 27x + 1$$
, $[-5, 5]$

c)
$$\frac{\ln x}{x}$$
, [1, 2].

5. For a given function, determine the intervals where it is increasing/decreasing, and find points of local maximum/minimum. Then find the domain, vertical and horizontal asymptotes. Finally, sketch the graph of the function.

a)
$$f(x) = 2\sqrt{x} - x$$

b)
$$f(x) = \frac{e^x}{x^2}$$

c)
$$f(x) = x^4 - 4x$$

d)
$$f(x) = \ln(x^2 - 3x + 2)$$
.