MAT 21A, Fall 2021 Solutions to homework 3

1. (10 points) Find the limit $\lim_{x\to 1} \arccos(\ln(\sqrt{x}))$.

Solution: We have $\lim_{x\to 1} \sqrt{x} = 1$, so $\lim_{x\to 1} \ln(\sqrt{x}) = \ln(1) = 0$ and

$$\lim_{x \to 1} \arccos(\ln(\sqrt{x})) = \arccos(0) = \frac{\pi}{2}$$

2. (10 points) Show that the function $F(x) = (x-1)^2(x-5)^2 + x$ takes on value 3 for some value of x.

Solution: We have $F(1) = (1-1)^2(1-5)^2 + 1 = 0 + 1 = 1$, $F(5) = (5-1)^2(5-5)^2 + 5 = 0 + 5 = 5$. Therefore F(1) < 3, F(5) > 3 and by Intermediate Value Theorem F(x) = 3 for some point x on the interval [1, 5].

3. (10 points) Compute the limit

$$\lim_{x \to +\infty} \frac{3x^3 + 2x^2 - 5x + 1}{-2x^3 + x^2 - 4x + 7}$$

Solution: We divide the numerator and the denominator by the highest power of x in the fraction, that is, by x^3 :

$$\lim_{x \to +\infty} \frac{3x^3 + 2x^2 - 5x + 1}{-2x^3 + x^2 - 4x + 7} = \lim_{x \to +\infty} \frac{3 + 2/x - 5/x^2 + 1/x^3}{-2 + 1/x - 4/x^2 + 7/x^3} = \frac{3 + 0 + 0 + 0}{-2 + 0 + 0 + 0} = -\frac{3}{2}$$

- 4. (10 points) Consider the function $f(x) = \frac{3}{2} \left(\frac{x}{x-1}\right)^{\frac{3}{4}}$.
 - a) Find the domain of f(x).
 - b) How does the graph behave as $x \to 0$?
 - c) How does the graph behave as $x \to +1$ and $x \to -1$?
 - d) Find the vertical and horizontal asymptotes for f(x).
 - e) Sketch the graph of f(x).

Solution: (a) The function is defined where $x \neq 1$, and $\frac{x}{x-1} \geq 0$. For x > 1 we have x > 0, x - 1 > 0, so $\frac{x}{x-1} > 0$; for 0 < x < 1 we have x > 0, x - 1 < 0, so $\frac{x}{x-1} > < 0$; for x < 0 we have x < 0, x - 1 < 0, so $\frac{x}{x-1} > < 0$; for x < 0 we have x < 0, x - 1 < 0, so $\frac{x}{x-1} > 0$. Therefore the domain is $(-\infty, 0] \cup (1, +\infty)$. (b) As $x \to 0^-$, we have $x - 1 \to -1$, so $\frac{x}{x-1} \to 0^+$. Therefore

(b) As $x \to 0^-$, we have $x - 1 \to -1$, so $\frac{x}{x-1} \to 0^+$. Therefore $\left(\frac{x}{x-1}\right)^{\frac{3}{4}} \to 0^{\frac{3}{4}} = 0$, and $\lim_{x\to 0^-} f(x) = 0$. The function is continuous at x = 0.

(c) For $x \to 1^+$ we have $x - 1 \to 0$, so $\frac{x}{x-1} \to +\infty$. Therefore $\left(\frac{x}{x-1}\right)^{\frac{3}{4}} \to +\infty$, and $\lim_{x\to 1^+} f(x) = +\infty$.

For $x \to -1$ we have

$$\lim_{x \to -1} f(x) = \frac{3}{2} \left(\frac{-1}{-2}\right)^{\frac{3}{4}} = \frac{3}{2 \cdot 2^{3/4}}.$$

(d) Since $\lim_{x\to 0^-} f(x) = 0$ and $\lim_{x\to 1^+} f(x) = +\infty$, the function f(x) has no vertical asymptote at x = 0 but it has a vertical asymptote at x = 1. Furthermore, we have

$$\lim_{x \to \pm \infty} \frac{x}{x - 1} = \lim_{x \to \pm \infty} \frac{1}{1 - 1/x} = 1,$$

Therefore at $x \to \pm \infty$ we have $\left(\frac{x}{x-1}\right)^{\frac{3}{4}} \to 1^{3/4} = 1$ and $\lim_{x \to \pm \infty} f(x) = \frac{3}{2}$. (e)

 $\mathbf{2}$